Ram Shringar Rao, S. Soni, Nanhay Singh, Omprakash Kaiwartya
{"title":"A Probabilistic Analysis of Path Duration Using Routing Protocol in VANETs","authors":"Ram Shringar Rao, S. Soni, Nanhay Singh, Omprakash Kaiwartya","doi":"10.1155/2014/495036","DOIUrl":null,"url":null,"abstract":"In recent years, various routing metrics such as throughput, end-to-end delay, packet delivery ratio, path duration, and so forth have been used to evaluate the performance of routing protocols in VANETs. Among these routing metrics, path duration is one of the most influential metrics. Highly mobile vehicles cause frequent topology change in vehicular network environment that ultimately affects the path duration. In this paper, we have derived a mathematical model to estimate path duration using border node-based most forward progress within radius (B-MFR), a position based routing protocol. The mathematical model for estimation of path duration consists of probability of finding next-hop node in forwarding region, estimation of expected number of hops, probability distribution of velocity of nodes, and link duration between each intermediate pair of nodes. The analytical results for the path duration estimation model have been obtained using MATLAB. The model for path duration estimation has been simulated in NS2. Each of the analytical results has been verified through respective simulation results. The result analysis clearly reveals that path duration increases with the increase in transmission range and node density and decreases with the increase in the number of hops in the path and velocity of the nodes.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/495036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
In recent years, various routing metrics such as throughput, end-to-end delay, packet delivery ratio, path duration, and so forth have been used to evaluate the performance of routing protocols in VANETs. Among these routing metrics, path duration is one of the most influential metrics. Highly mobile vehicles cause frequent topology change in vehicular network environment that ultimately affects the path duration. In this paper, we have derived a mathematical model to estimate path duration using border node-based most forward progress within radius (B-MFR), a position based routing protocol. The mathematical model for estimation of path duration consists of probability of finding next-hop node in forwarding region, estimation of expected number of hops, probability distribution of velocity of nodes, and link duration between each intermediate pair of nodes. The analytical results for the path duration estimation model have been obtained using MATLAB. The model for path duration estimation has been simulated in NS2. Each of the analytical results has been verified through respective simulation results. The result analysis clearly reveals that path duration increases with the increase in transmission range and node density and decreases with the increase in the number of hops in the path and velocity of the nodes.