Event-triggered Suboptimal Control Based Adaptive Reinforcement Learning

T. Ma, Ruizhuo Song
{"title":"Event-triggered Suboptimal Control Based Adaptive Reinforcement Learning","authors":"T. Ma, Ruizhuo Song","doi":"10.1145/3505688.3505699","DOIUrl":null,"url":null,"abstract":"The paper presents event-triggered suboptimal control based adaptive reinforcement learning. Linear quadratic optimal control requires the use of all state variables feedback, but in engineering practice, not all states can be measured or easy to be measured. Therefore, suboptimal control becomes very significant. Under event-triggered (ET) mechanism, we give the expression of suboptimal control, propose a novel triggering condition and prove the stability of close-loop system. Adaptive Q-learning is a kind of reinforcement learning, which is used to structure critic network. Finally, simulation example is represented to show the proposed is valid.","PeriodicalId":375528,"journal":{"name":"Proceedings of the 7th International Conference on Robotics and Artificial Intelligence","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Robotics and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3505688.3505699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents event-triggered suboptimal control based adaptive reinforcement learning. Linear quadratic optimal control requires the use of all state variables feedback, but in engineering practice, not all states can be measured or easy to be measured. Therefore, suboptimal control becomes very significant. Under event-triggered (ET) mechanism, we give the expression of suboptimal control, propose a novel triggering condition and prove the stability of close-loop system. Adaptive Q-learning is a kind of reinforcement learning, which is used to structure critic network. Finally, simulation example is represented to show the proposed is valid.
基于自适应强化学习的事件触发次优控制
提出了一种基于事件触发次优控制的自适应强化学习方法。线性二次最优控制要求使用所有状态变量反馈,但在工程实践中,并非所有状态都可以测量或易于测量。因此,次优控制变得非常重要。在事件触发(ET)机制下,给出了次优控制的表达式,提出了一种新的触发条件,证明了闭环系统的稳定性。自适应q学习是一种强化学习,用于构建评价网络。最后通过仿真实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信