An ontology-based approach for preprocessing in machine learning

Patricia Centeno Soto, Nour Ramzy, Felix Ocker, B. Vogel‐Heuser
{"title":"An ontology-based approach for preprocessing in machine learning","authors":"Patricia Centeno Soto, Nour Ramzy, Felix Ocker, B. Vogel‐Heuser","doi":"10.1109/INES52918.2021.9512899","DOIUrl":null,"url":null,"abstract":"Increasing pressure on internationally operating companies leads to the application of novel technologies, e.g., Machine Learning models. However, Machine Learning algorithms require preprocessing, i.e., data cleaning, which is time consuming and requires domain-specific knowledge. Formalized knowledge bases capture such domain-specific knowledge in a computer-interpretable way and have the potential to reduce manual efforts for this process. This paper presents a framework for semantic preprocessing, which is evaluated at the example of an industrial use case from the semiconductor industry.","PeriodicalId":427652,"journal":{"name":"2021 IEEE 25th International Conference on Intelligent Engineering Systems (INES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 25th International Conference on Intelligent Engineering Systems (INES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INES52918.2021.9512899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Increasing pressure on internationally operating companies leads to the application of novel technologies, e.g., Machine Learning models. However, Machine Learning algorithms require preprocessing, i.e., data cleaning, which is time consuming and requires domain-specific knowledge. Formalized knowledge bases capture such domain-specific knowledge in a computer-interpretable way and have the potential to reduce manual efforts for this process. This paper presents a framework for semantic preprocessing, which is evaluated at the example of an industrial use case from the semiconductor industry.
机器学习中基于本体的预处理方法
国际运营公司面临的压力越来越大,这导致了新技术的应用,例如机器学习模型。然而,机器学习算法需要预处理,即数据清理,这是耗时的,并且需要特定领域的知识。形式化的知识库以计算机可解释的方式捕获这些特定于领域的知识,并且具有减少此过程的人工工作的潜力。本文提出了一个语义预处理框架,并以半导体行业的一个工业用例为例对该框架进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信