{"title":"A construction principle for proper scoring rules","authors":"Jonas R. Brehmer","doi":"10.1090/bproc/98","DOIUrl":null,"url":null,"abstract":"Proper scoring rules enable decision-theoretically principled comparisons of probabilistic forecasts. New scoring rules can be constructed by identifying the predictive distribution with an element of a parametric family and then applying a known scoring rule. We introduce a condition which ensures propriety in this construction and thereby obtain novel proper scoring rules.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Proper scoring rules enable decision-theoretically principled comparisons of probabilistic forecasts. New scoring rules can be constructed by identifying the predictive distribution with an element of a parametric family and then applying a known scoring rule. We introduce a condition which ensures propriety in this construction and thereby obtain novel proper scoring rules.