Scalability and Sample Efficiency Analysis of Graph Neural Networks for Power System State Estimation

Ognjen Kundacina, Gorana Gojic, M. Cosovic, D. Mišković, D. Vukobratović
{"title":"Scalability and Sample Efficiency Analysis of Graph Neural Networks for Power System State Estimation","authors":"Ognjen Kundacina, Gorana Gojic, M. Cosovic, D. Mišković, D. Vukobratović","doi":"10.1109/BalkanCom58402.2023.10167975","DOIUrl":null,"url":null,"abstract":"Data-driven state estimation (SE) is becoming increasingly important in modern power systems, as it allows for more efficient analysis of system behaviour using real-time measurement data. This paper thoroughly evaluates a phasor measurement unit-only state estimator based on graph neural networks (GNNs) applied over factor graphs. To assess the sample efficiency of the GNN model, we perform multiple training experiments on various training set sizes. Additionally, to evaluate the scalability of the GNN model, we conduct experiments on power systems of various sizes. Our results show that the GNN-based state estimator exhibits high accuracy and efficient use of data. Additionally, it demonstrated scalability in terms of both memory usage and inference time, making it a promising solution for data-driven SE in modern power systems.","PeriodicalId":363999,"journal":{"name":"2023 International Balkan Conference on Communications and Networking (BalkanCom)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Balkan Conference on Communications and Networking (BalkanCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BalkanCom58402.2023.10167975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data-driven state estimation (SE) is becoming increasingly important in modern power systems, as it allows for more efficient analysis of system behaviour using real-time measurement data. This paper thoroughly evaluates a phasor measurement unit-only state estimator based on graph neural networks (GNNs) applied over factor graphs. To assess the sample efficiency of the GNN model, we perform multiple training experiments on various training set sizes. Additionally, to evaluate the scalability of the GNN model, we conduct experiments on power systems of various sizes. Our results show that the GNN-based state estimator exhibits high accuracy and efficient use of data. Additionally, it demonstrated scalability in terms of both memory usage and inference time, making it a promising solution for data-driven SE in modern power systems.
图神经网络在电力系统状态估计中的可扩展性和样本效率分析
数据驱动状态估计(SE)在现代电力系统中变得越来越重要,因为它允许使用实时测量数据更有效地分析系统行为。本文对一种应用于因子图的基于图神经网络(GNNs)的相量测量单元状态估计器进行了全面的评价。为了评估GNN模型的样本效率,我们在不同的训练集大小上进行了多个训练实验。此外,为了评估GNN模型的可扩展性,我们在不同规模的电力系统上进行了实验。结果表明,基于gnn的状态估计器具有较高的精度和数据利用率。此外,它在内存使用和推理时间方面展示了可伸缩性,使其成为现代电力系统中数据驱动SE的一个有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信