{"title":"Mathematical modelling of the injection of coke oven gas into a blast furnace tuyere","authors":"P. Hellberg, T. Jonsson, P. Jönsson","doi":"10.1111/J.1600-0692.2005.00744.X","DOIUrl":null,"url":null,"abstract":"A fundamental mathematical model of the tuyere in a blast furnace has been developed earlier. In this study, the model is mainly used to predict the combustion reactions in the tuyere when coke oven gas is injected through lances located inside the tuyere. The combustion reaction is modelled using a simple reaction scheme with 3 possible reactions that can occur. The influence of the following parameters on the predicted velocities, temperatures and composition of the gas at the tuyere outlet is studied in this paper: (i) injection amount of coke oven gas, (ii) the use of 1 or 2 injection lances and (iii) the influence of the injection angles when using 2 injection lances. It is concluded that the maximum injecting amount using 1 and 2 lances is 10,000 nm 3 /h and 15,000 m 3 /h, respectively. The combustion conditions are better when using 2 injection lances are compared to 1 injection lance and the predicted results are not affected to a large degree when the injection angles are changed.","PeriodicalId":256362,"journal":{"name":"Scandinavian Journal of Metallurgy","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.1600-0692.2005.00744.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
A fundamental mathematical model of the tuyere in a blast furnace has been developed earlier. In this study, the model is mainly used to predict the combustion reactions in the tuyere when coke oven gas is injected through lances located inside the tuyere. The combustion reaction is modelled using a simple reaction scheme with 3 possible reactions that can occur. The influence of the following parameters on the predicted velocities, temperatures and composition of the gas at the tuyere outlet is studied in this paper: (i) injection amount of coke oven gas, (ii) the use of 1 or 2 injection lances and (iii) the influence of the injection angles when using 2 injection lances. It is concluded that the maximum injecting amount using 1 and 2 lances is 10,000 nm 3 /h and 15,000 m 3 /h, respectively. The combustion conditions are better when using 2 injection lances are compared to 1 injection lance and the predicted results are not affected to a large degree when the injection angles are changed.