{"title":"An on-pixel FPN reduction method for a high dynamic range CMO S imager","authors":"E. Labonne, G. Sicard, M. Renaudin","doi":"10.1109/ESSCIRC.2007.4430311","DOIUrl":null,"url":null,"abstract":"A high dynamic range CMOS image sensor implementing a fixed pattern noise (FPN) reduction method is presented. The high dynamic range is reach through a logarithmic architecture pixel. An on-chip calibration method is implemented to reduce the FPN caused by process variations, weakness of this architecture. The basic principle is the calibration of each pixel against an in-pixel reference current in place of the diode photocurrent. Two pixel levels corresponding to the photocurrent and a known reference current become available for every pixel Then a double sampling technique allows removing offsets due to threshold voltage variations. An innovation of this work consists in the implementation of the current calibration source totally inside the pixel, allowing a better precision of the FPN compensation and lower power consumption. This FPN reduction method is performed while keeping only four transistors per pixel. A 128times128 pixels test chip has been designed and fabricated in 0.35 mum, 3.3 V CMOS standard technology. Pixel measures 10times10.6 mum2 with a fill factor of 33%. The dynamic range is up to 100dB with a frame rate up to 30 images per second and a measured FPN of 2.9% rms of the total dynamic range.","PeriodicalId":121828,"journal":{"name":"ESSCIRC 2007 - 33rd European Solid-State Circuits Conference","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2007 - 33rd European Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2007.4430311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
A high dynamic range CMOS image sensor implementing a fixed pattern noise (FPN) reduction method is presented. The high dynamic range is reach through a logarithmic architecture pixel. An on-chip calibration method is implemented to reduce the FPN caused by process variations, weakness of this architecture. The basic principle is the calibration of each pixel against an in-pixel reference current in place of the diode photocurrent. Two pixel levels corresponding to the photocurrent and a known reference current become available for every pixel Then a double sampling technique allows removing offsets due to threshold voltage variations. An innovation of this work consists in the implementation of the current calibration source totally inside the pixel, allowing a better precision of the FPN compensation and lower power consumption. This FPN reduction method is performed while keeping only four transistors per pixel. A 128times128 pixels test chip has been designed and fabricated in 0.35 mum, 3.3 V CMOS standard technology. Pixel measures 10times10.6 mum2 with a fill factor of 33%. The dynamic range is up to 100dB with a frame rate up to 30 images per second and a measured FPN of 2.9% rms of the total dynamic range.