A non-parametric approach to behavioral device modeling

D. Drmanac, B. Bolin, Li-C. Wang
{"title":"A non-parametric approach to behavioral device modeling","authors":"D. Drmanac, B. Bolin, Li-C. Wang","doi":"10.1109/ISQED.2010.5450433","DOIUrl":null,"url":null,"abstract":"This work proposes a non-parametric methodology for quick and effective behavioral macromodeling of complex digital and analog devices. Gaussian Process Regression (GPR) learning algorithms are used to generate simple, robust, and widely applicable time-domain models without specifying device equations or parameters. SPICE simulations expose device dynamics to train behavioral models while exhaustive validation ensures accurate and efficient models are generated. Average speedups of 97X are observed over SPICE simulation maintaining accurate outputs within 95% confidence intervals.","PeriodicalId":369046,"journal":{"name":"2010 11th International Symposium on Quality Electronic Design (ISQED)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2010.5450433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work proposes a non-parametric methodology for quick and effective behavioral macromodeling of complex digital and analog devices. Gaussian Process Regression (GPR) learning algorithms are used to generate simple, robust, and widely applicable time-domain models without specifying device equations or parameters. SPICE simulations expose device dynamics to train behavioral models while exhaustive validation ensures accurate and efficient models are generated. Average speedups of 97X are observed over SPICE simulation maintaining accurate outputs within 95% confidence intervals.
行为装置建模的非参数方法
这项工作提出了一种非参数方法,用于快速有效地对复杂的数字和模拟设备进行行为宏观建模。高斯过程回归(GPR)学习算法用于生成简单,鲁棒和广泛适用的时域模型,而无需指定设备方程或参数。SPICE模拟暴露设备动态来训练行为模型,而详尽的验证确保生成准确有效的模型。在SPICE模拟中观察到97X的平均加速,在95%的置信区间内保持准确的输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信