{"title":"Channel confined kinesin-microtubule biomolecular nanomotors","authors":"Y.M. Huang, M. Uppalapati, W. Hancock, T. Jackson","doi":"10.1109/DRC.2004.1367852","DOIUrl":null,"url":null,"abstract":"Kinesins are molecular motors that move along microtubules, and provide a model system for force generation that can be exploited for kinesin-powered nano- and micro-machines. Microtubules are /spl sim/25 nm diameter cylindrical polymers of the protein tubulin and can be nm to /spl mu/m long. Kinesins bind to microtubules and use the energy of ATP hydrolysis to walk unidirectionally along them at speeds of /spl sim/1 /spl mu/m/s. In this work, we reverse the typical biological system and move microtubules along surfaces functionalized with kinesin motors. The microtubules then become potential transport vehicles for sensors and lab-on-a-chip applications. A key requirement for extracting useful work from this system is confinement and control of the movement of microtubules over kinesin coated surfaces.","PeriodicalId":385948,"journal":{"name":"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2004.1367852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Kinesins are molecular motors that move along microtubules, and provide a model system for force generation that can be exploited for kinesin-powered nano- and micro-machines. Microtubules are /spl sim/25 nm diameter cylindrical polymers of the protein tubulin and can be nm to /spl mu/m long. Kinesins bind to microtubules and use the energy of ATP hydrolysis to walk unidirectionally along them at speeds of /spl sim/1 /spl mu/m/s. In this work, we reverse the typical biological system and move microtubules along surfaces functionalized with kinesin motors. The microtubules then become potential transport vehicles for sensors and lab-on-a-chip applications. A key requirement for extracting useful work from this system is confinement and control of the movement of microtubules over kinesin coated surfaces.