{"title":"One-Stage Auto-Tuning Procedure of Robot Dynamics and Control Parameters for Trajectory Tracking Applications","authors":"L. Roveda, Marco Forgione, D. Piga","doi":"10.1109/UR49135.2020.9144761","DOIUrl":null,"url":null,"abstract":"Autonomy is increasingly demanded by industrial manipulators. Robots have to be capable to regulate their behavior to different operational conditions, without requiring high time/resource-consuming human intervention. Achieving an automated tuning of the control parameters of a manipulator is still a challenging task. This paper addresses the problem of automated tuning of the manipulator controller for trajectory tracking. A Bayesian optimization algorithm is proposed to tune both the low-level controller parameters (i.e., robot dynamics compensation) and the high-level controller parameters (i.e., the joint PID gains). The algorithm adapts the control parameters through a data-driven procedure, optimizing a userdefined trajectory-tracking cost. Safety constraints ensuring, e.g., closed-loop stability and bounds on the maximum joint position errors, are also included. The performance of the proposed approach is demonstrated on a torque-controlled 7degree-of-freedom FRANKA Emika robot manipulator. The 25 robot control parameters (i.e., 4 link-mass parameters and 21 PID gains) are tuned in 125 iterations, and comparable results with respect to the FRANKA Emika embedded position controller are achieved.","PeriodicalId":360208,"journal":{"name":"2020 17th International Conference on Ubiquitous Robots (UR)","volume":"618 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UR49135.2020.9144761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Autonomy is increasingly demanded by industrial manipulators. Robots have to be capable to regulate their behavior to different operational conditions, without requiring high time/resource-consuming human intervention. Achieving an automated tuning of the control parameters of a manipulator is still a challenging task. This paper addresses the problem of automated tuning of the manipulator controller for trajectory tracking. A Bayesian optimization algorithm is proposed to tune both the low-level controller parameters (i.e., robot dynamics compensation) and the high-level controller parameters (i.e., the joint PID gains). The algorithm adapts the control parameters through a data-driven procedure, optimizing a userdefined trajectory-tracking cost. Safety constraints ensuring, e.g., closed-loop stability and bounds on the maximum joint position errors, are also included. The performance of the proposed approach is demonstrated on a torque-controlled 7degree-of-freedom FRANKA Emika robot manipulator. The 25 robot control parameters (i.e., 4 link-mass parameters and 21 PID gains) are tuned in 125 iterations, and comparable results with respect to the FRANKA Emika embedded position controller are achieved.