One-Stage Auto-Tuning Procedure of Robot Dynamics and Control Parameters for Trajectory Tracking Applications

L. Roveda, Marco Forgione, D. Piga
{"title":"One-Stage Auto-Tuning Procedure of Robot Dynamics and Control Parameters for Trajectory Tracking Applications","authors":"L. Roveda, Marco Forgione, D. Piga","doi":"10.1109/UR49135.2020.9144761","DOIUrl":null,"url":null,"abstract":"Autonomy is increasingly demanded by industrial manipulators. Robots have to be capable to regulate their behavior to different operational conditions, without requiring high time/resource-consuming human intervention. Achieving an automated tuning of the control parameters of a manipulator is still a challenging task. This paper addresses the problem of automated tuning of the manipulator controller for trajectory tracking. A Bayesian optimization algorithm is proposed to tune both the low-level controller parameters (i.e., robot dynamics compensation) and the high-level controller parameters (i.e., the joint PID gains). The algorithm adapts the control parameters through a data-driven procedure, optimizing a userdefined trajectory-tracking cost. Safety constraints ensuring, e.g., closed-loop stability and bounds on the maximum joint position errors, are also included. The performance of the proposed approach is demonstrated on a torque-controlled 7degree-of-freedom FRANKA Emika robot manipulator. The 25 robot control parameters (i.e., 4 link-mass parameters and 21 PID gains) are tuned in 125 iterations, and comparable results with respect to the FRANKA Emika embedded position controller are achieved.","PeriodicalId":360208,"journal":{"name":"2020 17th International Conference on Ubiquitous Robots (UR)","volume":"618 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UR49135.2020.9144761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Autonomy is increasingly demanded by industrial manipulators. Robots have to be capable to regulate their behavior to different operational conditions, without requiring high time/resource-consuming human intervention. Achieving an automated tuning of the control parameters of a manipulator is still a challenging task. This paper addresses the problem of automated tuning of the manipulator controller for trajectory tracking. A Bayesian optimization algorithm is proposed to tune both the low-level controller parameters (i.e., robot dynamics compensation) and the high-level controller parameters (i.e., the joint PID gains). The algorithm adapts the control parameters through a data-driven procedure, optimizing a userdefined trajectory-tracking cost. Safety constraints ensuring, e.g., closed-loop stability and bounds on the maximum joint position errors, are also included. The performance of the proposed approach is demonstrated on a torque-controlled 7degree-of-freedom FRANKA Emika robot manipulator. The 25 robot control parameters (i.e., 4 link-mass parameters and 21 PID gains) are tuned in 125 iterations, and comparable results with respect to the FRANKA Emika embedded position controller are achieved.
用于轨迹跟踪的机器人动力学和控制参数单阶段自整定方法
工业操作者对自主性的要求越来越高。机器人必须能够根据不同的操作条件调节自己的行为,而不需要耗费大量时间/资源的人为干预。实现机械手控制参数的自动整定仍然是一项具有挑战性的任务。研究了用于轨迹跟踪的机械臂控制器的自动整定问题。提出了一种贝叶斯优化算法,对低级控制器参数(即机器人动力学补偿)和高级控制器参数(即联合PID增益)进行整定。该算法通过数据驱动程序自适应控制参数,优化用户定义的轨迹跟踪成本。同时还包括保证闭环稳定性和最大关节位置误差的安全约束。在力矩控制的7自由度FRANKA Emika机器人机械臂上验证了该方法的性能。在125次迭代中调整了25个机器人控制参数(即4个连杆质量参数和21个PID增益),并获得了与FRANKA Emika嵌入式位置控制器相当的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信