Scaling in distributed evolutionary algorithms with persistent population

J. J. M. Guervós, A. García, J. Cruz, Anna I. Esparcia-Alcázar, C. Cotta
{"title":"Scaling in distributed evolutionary algorithms with persistent population","authors":"J. J. M. Guervós, A. García, J. Cruz, Anna I. Esparcia-Alcázar, C. Cotta","doi":"10.1109/CEC.2012.6256622","DOIUrl":null,"url":null,"abstract":"This work presents the experimental results obtained with a distributed computing system created by mapping an evolutionary algorithm to the CouchDB object store. The framework decouples the population from the evolutionary algorithm and -through the API that CouchDB provides- allows the distributed and asynchronous operation of clients written in different programming languages. In this paper we present tests which prove that the novel algorithm design still performs as good as a canonical evolutionary algorithm and discover what are the main issues concerning it, what kind of speedups should we expect, and how all this affects the fundamental evolutionary algorithms concepts.","PeriodicalId":376837,"journal":{"name":"2012 IEEE Congress on Evolutionary Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2012.6256622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This work presents the experimental results obtained with a distributed computing system created by mapping an evolutionary algorithm to the CouchDB object store. The framework decouples the population from the evolutionary algorithm and -through the API that CouchDB provides- allows the distributed and asynchronous operation of clients written in different programming languages. In this paper we present tests which prove that the novel algorithm design still performs as good as a canonical evolutionary algorithm and discover what are the main issues concerning it, what kind of speedups should we expect, and how all this affects the fundamental evolutionary algorithms concepts.
具有持久种群的分布式进化算法的缩放
本文介绍了通过将进化算法映射到CouchDB对象存储来创建分布式计算系统所获得的实验结果。该框架将填充与进化算法解耦,并通过CouchDB提供的API允许用不同编程语言编写的客户机进行分布式和异步操作。在本文中,我们给出了测试,证明了新的算法设计仍然与规范的进化算法一样好,并发现了关于它的主要问题,我们应该期望什么样的加速,以及所有这些如何影响基本的进化算法概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信