Fast full-wave modeling of passive structures with graphic processors

A. Chiariello, A. Maffucci, F. Villone, M. Nicolazzo
{"title":"Fast full-wave modeling of passive structures with graphic processors","authors":"A. Chiariello, A. Maffucci, F. Villone, M. Nicolazzo","doi":"10.1109/EPEPS.2011.6100218","DOIUrl":null,"url":null,"abstract":"A parallel computation approach based on the properties of the Graphics Processor Units (GPU) is here presented to speed-up the broadband modeling of passive 3D structures. The full-wave electromagnetic model is based on a surface integral formulation, numerically implemented by using a null-pinv decomposition of the unknowns. The numerical model has been proven to be accurate and well-posed for a frequency range from DC to hundreds of GHz. A bottleneck of the model is the assembly of fully populated matrices and the final matrix inversion. This paper presents A GPU parallelization of the matrix assembly phase, and analyzes two case-studies which refer to full-wave analysis of interconnects. The achieved speedup with respect to a conventional serial approach is around 50x.","PeriodicalId":313560,"journal":{"name":"2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2011.6100218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A parallel computation approach based on the properties of the Graphics Processor Units (GPU) is here presented to speed-up the broadband modeling of passive 3D structures. The full-wave electromagnetic model is based on a surface integral formulation, numerically implemented by using a null-pinv decomposition of the unknowns. The numerical model has been proven to be accurate and well-posed for a frequency range from DC to hundreds of GHz. A bottleneck of the model is the assembly of fully populated matrices and the final matrix inversion. This paper presents A GPU parallelization of the matrix assembly phase, and analyzes two case-studies which refer to full-wave analysis of interconnects. The achieved speedup with respect to a conventional serial approach is around 50x.
图形处理器的被动结构快速全波建模
本文提出了一种基于图形处理器(GPU)特性的并行计算方法,以提高被动三维结构的宽带建模速度。全波电磁模型基于表面积分公式,通过对未知数进行零pinv分解在数值上实现。在直流到数百GHz的频率范围内,该数值模型是准确的。该模型的瓶颈是完全填充矩阵的组装和最终的矩阵反演。本文提出了一种矩阵装配阶段的GPU并行化方法,并分析了两个涉及互连全波分析的案例。与传统串行方法相比,实现的加速约为50倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信