Concurrent Plantar Stress Sensing and Energy Harvesting Technique by Piezoelectric Insole Device and Rectifying Circuitry for Gait Monitoring in the Internet of Health Things
{"title":"Concurrent Plantar Stress Sensing and Energy Harvesting Technique by Piezoelectric Insole Device and Rectifying Circuitry for Gait Monitoring in the Internet of Health Things","authors":"Shuaibo Kang, Jingjing Lin, Junliang Chen, Yanning Dai, Zhiheng Wang, Shuo Gao","doi":"10.1109/FLEPS49123.2020.9239566","DOIUrl":null,"url":null,"abstract":"Concurrent high force detection accuracy and extended battery lifetime are strongly expected in wearable gait monitoring systems, which are important for many Internet of Health Things (IoHT) applications. In this article, a piezoelectric insole device and rectifying circuitry based technique is presented to achieve these two ultimate goals. Here, walking induced positive and negative charges are separated for plantar stress detection and energy harvesting respectively, realizing the two functions concurrently. Experimental results demonstrate that first, the high detection sensitivity of 55 mN and responsivity of 231 mV/N are achieved, satisfying the need for diagnosing various diseases; second, energy of 1.6 pJ is stored during a walking event, consequently extending the battery lifetime. The developed technique enhances the development of gait monitoring in IoHT.","PeriodicalId":101496,"journal":{"name":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"203 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FLEPS49123.2020.9239566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Concurrent high force detection accuracy and extended battery lifetime are strongly expected in wearable gait monitoring systems, which are important for many Internet of Health Things (IoHT) applications. In this article, a piezoelectric insole device and rectifying circuitry based technique is presented to achieve these two ultimate goals. Here, walking induced positive and negative charges are separated for plantar stress detection and energy harvesting respectively, realizing the two functions concurrently. Experimental results demonstrate that first, the high detection sensitivity of 55 mN and responsivity of 231 mV/N are achieved, satisfying the need for diagnosing various diseases; second, energy of 1.6 pJ is stored during a walking event, consequently extending the battery lifetime. The developed technique enhances the development of gait monitoring in IoHT.