Advance Layoff Notices and Labor Market Forecasting

Pawel M. Krolikowski, Kurt G. Lunsford
{"title":"Advance Layoff Notices and Labor Market Forecasting","authors":"Pawel M. Krolikowski, Kurt G. Lunsford","doi":"10.2139/ssrn.3531229","DOIUrl":null,"url":null,"abstract":"We collect rich establishment-level data about advance layoff notices filed under the Worker Adjustment and Retraining Notification (WARN) Act since January 1990. We present in-sample evidence that the number of workers affected by WARN notices leads state-level initial unemployment insurance claims, changes in the unemployment rate, and changes in private employment. The effects are strongest at the one and two-month horizons. After aggregating state-level information to a national-level “WARN factor” using a dynamic factor model, we find that the factor substantially improves out-of-sample forecasts of changes of manufacturing employment in real time.","PeriodicalId":233460,"journal":{"name":"Federal Reserve Bank of Cleveland Research Paper Series","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Federal Reserve Bank of Cleveland Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3531229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We collect rich establishment-level data about advance layoff notices filed under the Worker Adjustment and Retraining Notification (WARN) Act since January 1990. We present in-sample evidence that the number of workers affected by WARN notices leads state-level initial unemployment insurance claims, changes in the unemployment rate, and changes in private employment. The effects are strongest at the one and two-month horizons. After aggregating state-level information to a national-level “WARN factor” using a dynamic factor model, we find that the factor substantially improves out-of-sample forecasts of changes of manufacturing employment in real time.
提前裁员通知和劳动力市场预测
我们收集了自1990年1月以来根据《工人调整和再培训通知法》(WARN)提交的有关提前裁员通知的丰富企业数据。我们提出样本内证据表明,受WARN通知影响的工人数量导致了州一级的初始失业保险索赔、失业率的变化和私营就业的变化。这种影响在1个月和2个月时最为强烈。利用动态因子模型将国家级信息聚合为国家级“WARN因子”后,我们发现该因子显著提高了对制造业就业变化的实时样本外预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信