Classificação de Esteatose Hepática Não Alcoólica em Imagens Térmicas da Região do Fígado Utilizando Redes Neurais Convolucionais

D. M. Pinto, John Lennon Carvalho de Souza, A. C. Silva, Henrique Manoel de Araújo Martins Filho, A. Paiva, R. A. Zângaro
{"title":"Classificação de Esteatose Hepática Não Alcoólica em Imagens Térmicas da Região do Fígado Utilizando Redes Neurais Convolucionais","authors":"D. M. Pinto, John Lennon Carvalho de Souza, A. C. Silva, Henrique Manoel de Araújo Martins Filho, A. Paiva, R. A. Zângaro","doi":"10.5753/sbcas.2021.16074","DOIUrl":null,"url":null,"abstract":"A esteatose hepática não alcoólica (DHGNA) é a doença de fígado de maior incidência no mundo, afetando cerca de 1,5 bilhão de pessoas. Ela possui uma alta taxa de mortalidade e, se não for diagnosticada e tratada cedo, pode evoluir para sérias complicações no fígado, portanto seu diagnóstico deve ser rápido e eficiente. A aferição da temperatura do corpo humano via termografia é um método não invasivo para detectar a DHGNA. Neste contexto, o objetivo deste trabalho é apresentar um método para classificação de DHGNA em imagens de termografia de fígado. Utilizando redes neurais convolucionais e técnicas de processamento de imagens, o método proposto foi capaz alcançar uma acurácia de 96%, sensibilidade de 91% e especificidade 97%.","PeriodicalId":413867,"journal":{"name":"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2021.16074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A esteatose hepática não alcoólica (DHGNA) é a doença de fígado de maior incidência no mundo, afetando cerca de 1,5 bilhão de pessoas. Ela possui uma alta taxa de mortalidade e, se não for diagnosticada e tratada cedo, pode evoluir para sérias complicações no fígado, portanto seu diagnóstico deve ser rápido e eficiente. A aferição da temperatura do corpo humano via termografia é um método não invasivo para detectar a DHGNA. Neste contexto, o objetivo deste trabalho é apresentar um método para classificação de DHGNA em imagens de termografia de fígado. Utilizando redes neurais convolucionais e técnicas de processamento de imagens, o método proposto foi capaz alcançar uma acurácia de 96%, sensibilidade de 91% e especificidade 97%.
用卷积神经网络对肝脏区域热图像中的非酒精性脂肪变性进行分类
非酒精性脂肪肝(DHGNA)是肝的病发病率在世界的影响大约50亿人。她有高死亡率,如果早期诊断和治疗,不能发展为严重的并发症的肝脏,所以你必须快,诊断和fi知道。测量人体温度通过termografi是一种非侵入性检测DHGNA。在这样的环境下,这个工作的目的是提供一种方法来分类的fiDHGNA在图像termografi的肝脏。用convolucionais神经网络和图像处理技术,该方法能够达到96%的精度,灵敏度91%,请fi97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信