{"title":"Functional correlation analysis in crosstalk induced critical paths identification","authors":"Tong Xiao, M. Marek-Sadowska","doi":"10.1145/378239.379041","DOIUrl":null,"url":null,"abstract":"In deep submicron digital circuits capacitive couplings make delay of a switching signal highly dependent on its neighbors' switching times and switching directions. A long path may have a large number of coupling neighbors with difficult to determine interdependencies. Ignoring the mutual relationship among the signals may result in a very pessimistic estimation of circuit delay. In this paper, we apply efficient functional correlation analysis techniques to identify critical paths caused by crosstalk delay effects. We also discuss applications to static timing optimization. Experiments demonstrate efficacy of the proposed technique.","PeriodicalId":154316,"journal":{"name":"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/378239.379041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
In deep submicron digital circuits capacitive couplings make delay of a switching signal highly dependent on its neighbors' switching times and switching directions. A long path may have a large number of coupling neighbors with difficult to determine interdependencies. Ignoring the mutual relationship among the signals may result in a very pessimistic estimation of circuit delay. In this paper, we apply efficient functional correlation analysis techniques to identify critical paths caused by crosstalk delay effects. We also discuss applications to static timing optimization. Experiments demonstrate efficacy of the proposed technique.