Gene-expression-based cancer classification through feature selection with KNN and SVM classifiers

S. Bouazza, N. Hamdi, A. Zeroual, K. Auhmani
{"title":"Gene-expression-based cancer classification through feature selection with KNN and SVM classifiers","authors":"S. Bouazza, N. Hamdi, A. Zeroual, K. Auhmani","doi":"10.1109/ISACV.2015.7106168","DOIUrl":null,"url":null,"abstract":"This paper presents a study of feature selection methods effect, using a filter approach, on the accuracy and error of supervised classification of cancer. A comparative evaluation between different selection methods: Fisher, T-Statistics, SNR and ReliefF, is carried out, using the dataset of different cancers; leukemia cancer, prostate cancer and colon cancer. The classification results using k nearest neighbors (KNN) and support vector machine (SVM) classifiers show that the combination between SNR's method and the SVM classifier can present the highest accuracy.","PeriodicalId":426557,"journal":{"name":"2015 Intelligent Systems and Computer Vision (ISCV)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Intelligent Systems and Computer Vision (ISCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISACV.2015.7106168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

This paper presents a study of feature selection methods effect, using a filter approach, on the accuracy and error of supervised classification of cancer. A comparative evaluation between different selection methods: Fisher, T-Statistics, SNR and ReliefF, is carried out, using the dataset of different cancers; leukemia cancer, prostate cancer and colon cancer. The classification results using k nearest neighbors (KNN) and support vector machine (SVM) classifiers show that the combination between SNR's method and the SVM classifier can present the highest accuracy.
基于KNN和SVM分类器特征选择的基于基因表达的癌症分类
本文研究了特征选择方法对癌症监督分类正确率和错误率的影响。利用不同癌症的数据集,对Fisher、T-Statistics、SNR和ReliefF等不同的选择方法进行了比较评价;白血病、前列腺癌和结肠癌。使用k个最近邻(KNN)和支持向量机(SVM)分类器进行分类的结果表明,信噪比方法与支持向量机分类器相结合可以获得最高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信