L. Benini, A. Bogliolo, Giuseppe A. Paleologo, G. Micheli
{"title":"Policy optimization for dynamic power management","authors":"L. Benini, A. Bogliolo, Giuseppe A. Paleologo, G. Micheli","doi":"10.1145/277044.277094","DOIUrl":null,"url":null,"abstract":"Dynamic power management schemes (also called policies) can be used to control the power consumption levels of electronic systems, by setting their components in different states, each characterized by a performance level and a power consumption. In this paper, we describe power-managed systems using a finite-state, stochastic model. Furthermore, we show that the fundamental problem of finding an optimal policy which maximizes the average performance level of a system, subject to a constraint on the power consumption, can be formulated as a stochastic optimization problem called policy optimization. Policy optimization can be solved exactly in polynomial time (in the number of states of the model). We implemented a policy optimization tool and tested the quality of the optimal policies on a realistic case study.","PeriodicalId":221221,"journal":{"name":"Proceedings 1998 Design and Automation Conference. 35th DAC. (Cat. No.98CH36175)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"524","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1998 Design and Automation Conference. 35th DAC. (Cat. No.98CH36175)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/277044.277094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 524
Abstract
Dynamic power management schemes (also called policies) can be used to control the power consumption levels of electronic systems, by setting their components in different states, each characterized by a performance level and a power consumption. In this paper, we describe power-managed systems using a finite-state, stochastic model. Furthermore, we show that the fundamental problem of finding an optimal policy which maximizes the average performance level of a system, subject to a constraint on the power consumption, can be formulated as a stochastic optimization problem called policy optimization. Policy optimization can be solved exactly in polynomial time (in the number of states of the model). We implemented a policy optimization tool and tested the quality of the optimal policies on a realistic case study.