A Temperature Data Denoising Method Using Laplacian Matrix and Neumann Series

C. Tseng, Su-Ling Lee
{"title":"A Temperature Data Denoising Method Using Laplacian Matrix and Neumann Series","authors":"C. Tseng, Su-Ling Lee","doi":"10.1109/IS3C50286.2020.00060","DOIUrl":null,"url":null,"abstract":"In this paper, a temperature data denoising method using Laplacian matrix and Neumann series is presented. First, the denoising problem is formulated as an optimization problem whose solution needs to solve the matrix inversion. Then, to avoid solving matrix inversion, the Neumann series is used to approximate the matrix inversion by a truncated series expansion. Next, two efficient distributed implementation methods are presented to realize the proposed denoising algorithm. Finally, the real temperature data in Taiwan is used to demonstrate the effectiveness of the proposed method.","PeriodicalId":143430,"journal":{"name":"2020 International Symposium on Computer, Consumer and Control (IS3C)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on Computer, Consumer and Control (IS3C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS3C50286.2020.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a temperature data denoising method using Laplacian matrix and Neumann series is presented. First, the denoising problem is formulated as an optimization problem whose solution needs to solve the matrix inversion. Then, to avoid solving matrix inversion, the Neumann series is used to approximate the matrix inversion by a truncated series expansion. Next, two efficient distributed implementation methods are presented to realize the proposed denoising algorithm. Finally, the real temperature data in Taiwan is used to demonstrate the effectiveness of the proposed method.
基于拉普拉斯矩阵和诺伊曼级数的温度数据去噪方法
提出了一种基于拉普拉斯矩阵和诺伊曼级数的温度数据去噪方法。首先,将去噪问题表述为需要求解矩阵反演的优化问题。然后,为了避免求解矩阵逆,采用截断级数展开式近似求解矩阵逆。其次,提出了两种高效的分布式实现方法来实现所提出的去噪算法。最后,以台湾地区的实际温度资料为例,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信