{"title":"Timing-driven bipartitioning with replication using iterative quadratic programming","authors":"Shih-Lian T. Ou, Massoud Pedram","doi":"10.1109/ASPDAC.1999.759724","DOIUrl":null,"url":null,"abstract":"We present an algorithm for solving a general min-cut, two-way partitioning problem subject to timing constraints. The problem is formulated as a constrained programming problem and solved in two phases: cut-set minimization and timing satisfaction. A mathematical programming technique based on iterative quadratic programming (TPIQ) is used to find an approximate solution to the constrained problem. When the timing constraints are too strict to have a feasible solution, node replication is used to satisfy the constraints. Experimental results on the ISCAS89 benchmark suite show that TPIQ can solve the timing-driven bipartitioning problem with little impact on the chip size.","PeriodicalId":201352,"journal":{"name":"Proceedings of the ASP-DAC '99 Asia and South Pacific Design Automation Conference 1999 (Cat. No.99EX198)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ASP-DAC '99 Asia and South Pacific Design Automation Conference 1999 (Cat. No.99EX198)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.1999.759724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
We present an algorithm for solving a general min-cut, two-way partitioning problem subject to timing constraints. The problem is formulated as a constrained programming problem and solved in two phases: cut-set minimization and timing satisfaction. A mathematical programming technique based on iterative quadratic programming (TPIQ) is used to find an approximate solution to the constrained problem. When the timing constraints are too strict to have a feasible solution, node replication is used to satisfy the constraints. Experimental results on the ISCAS89 benchmark suite show that TPIQ can solve the timing-driven bipartitioning problem with little impact on the chip size.