Ensembled Deep Neural Network for Intracranial Hemorrhage Detection and Subtype Classification on Noncontrast CT Images

Yunan Wu, M. Supanich, Jie Deng
{"title":"Ensembled Deep Neural Network for Intracranial Hemorrhage Detection and Subtype Classification on Noncontrast CT Images","authors":"Yunan Wu, M. Supanich, Jie Deng","doi":"10.2991/jaims.d.210618.001","DOIUrl":null,"url":null,"abstract":"Rapid and accurate diagnosis of intracranial hemorrhage is clinically significant to ensure timely treatment. In this study, we developedanensembleddeepneuralnetworkforthedetectionandsubtypeclassificationofintracranialhemorrhage.Themodelconsistedoftwoparallelnetworkpathways,oneusingthreedifferentwindowlevel/widthsettingstoenhancetheimagecon-trastofbrain,blood,andsofttissue.Theotherextractedspatialinformationofadjacentimageslicestothetargetslice.BothpathwaysexploitedtheEfficientNet-B0asthebasicarchitectureandwereensembledtogeneratethefinalprediction.Classacti-vationmappingwasappliedinbothpathwaystohighlighttheregionsofdetectedhemorrhageandtheassociatedsubtypes.ThemodelwastrainedandtestedusingIntracranialHemorrhageDetectionChallenge(IHDC)datasetlaunchedbytheRadiologicalSocietyofNorthAmerica(RSNA)in2019,whichcontained674,258headnoncontrastscomputertomographyimagesacquiredfrom19,530patients.Anindependentdataset(CQ500)acquiredfromanotherinstitutionwasusedtotestthegeneralizabilityofthetrainedmodel.Theoverallaccuracy,sensitivity,andF1scoreforintracranialhemorrhagedetectionwere95.7%,85.9%,and86.7%onIHDCtestingdatasetand92.4%,92.6%,and93.4%onexternalCQ500testingdataset.Theheatmapsbyclassacti-vationmappingsuccessfullydemonstrateddiscriminativefeatureregionsofthepredictedhemorrhagelocationsandsubtypes,providingvisualguidanceforradiologiststoassistinrapiddiagnosisofintracranialhemorrhage.","PeriodicalId":196434,"journal":{"name":"Journal of Artificial Intelligence for Medical Sciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence for Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/jaims.d.210618.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Rapid and accurate diagnosis of intracranial hemorrhage is clinically significant to ensure timely treatment. In this study, we developedanensembleddeepneuralnetworkforthedetectionandsubtypeclassificationofintracranialhemorrhage.Themodelconsistedoftwoparallelnetworkpathways,oneusingthreedifferentwindowlevel/widthsettingstoenhancetheimagecon-trastofbrain,blood,andsofttissue.Theotherextractedspatialinformationofadjacentimageslicestothetargetslice.BothpathwaysexploitedtheEfficientNet-B0asthebasicarchitectureandwereensembledtogeneratethefinalprediction.Classacti-vationmappingwasappliedinbothpathwaystohighlighttheregionsofdetectedhemorrhageandtheassociatedsubtypes.ThemodelwastrainedandtestedusingIntracranialHemorrhageDetectionChallenge(IHDC)datasetlaunchedbytheRadiologicalSocietyofNorthAmerica(RSNA)in2019,whichcontained674,258headnoncontrastscomputertomographyimagesacquiredfrom19,530patients.Anindependentdataset(CQ500)acquiredfromanotherinstitutionwasusedtotestthegeneralizabilityofthetrainedmodel.Theoverallaccuracy,sensitivity,andF1scoreforintracranialhemorrhagedetectionwere95.7%,85.9%,and86.7%onIHDCtestingdatasetand92.4%,92.6%,and93.4%onexternalCQ500testingdataset.Theheatmapsbyclassacti-vationmappingsuccessfullydemonstrateddiscriminativefeatureregionsofthepredictedhemorrhagelocationsandsubtypes,providingvisualguidanceforradiologiststoassistinrapiddiagnosisofintracranialhemorrhage.
基于集成深度神经网络的颅内出血非对比CT图像检测及亚型分类
颅内出血的快速准确诊断对于保证及时治疗具有重要的临床意义。在这项研究中,我们developedanensembleddeepneuralnetworkforthedetectionandsubtypeclassificationofintracranialhemorrhage.Themodelconsistedoftwoparallelnetworkpathways oneusingthreedifferentwindowlevel / widthsettingstoenhancetheimagecon-trastofbrain、血液、andsofttissue.Theotherextractedspatialinformationofadjacentimageslicestothetargetslice.BothpathwaysexploitedtheEfficientNet-B0asthebasicarchitectureandwereensembledtogeneratethefinalprediction.Classacti-vationmappingwasappliedinbothpathwaystohighlighttheregionsofdetectedhemorrhageandtheassociatedsubtypes.ThemodelwastrainedandtestedusingIntracranialHemorrhageDetectionChallenge (IHDC) datasetlaunchedbytheRadiologicalSocietyofNorthAmerica (RSNA) in2019 whichcontained674,258headnoncontrastscomputertomographyimagesacquiredfrom19,530patients.Anindependentdataset CQ500 acquiredfromanotherinstitutionwasusedtotestthegeneralizabilityofthetrainedmodel.Theoverallaccuracy,敏感性,andF1scoreforintracranialhemorrhagedetectionwere95.7%, 85.9%, and86.7%onIHDCtestingdatasetand92.4%, 92.6%, and93.4%onexternalCQ500testingdataset.Theheatmapsbyclassacti-vationmappingsuccessfullydemonstrateddiscriminativefeatureregionsofthepredictedhemorrhagelocationsandsubtypes providingvisualguidanceforradiologiststoassistinrapiddiagnosisofintracranialhemorrhage。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信