{"title":"Ensembled Deep Neural Network for Intracranial Hemorrhage Detection and Subtype Classification on Noncontrast CT Images","authors":"Yunan Wu, M. Supanich, Jie Deng","doi":"10.2991/jaims.d.210618.001","DOIUrl":null,"url":null,"abstract":"Rapid and accurate diagnosis of intracranial hemorrhage is clinically significant to ensure timely treatment. In this study, we developedanensembleddeepneuralnetworkforthedetectionandsubtypeclassificationofintracranialhemorrhage.Themodelconsistedoftwoparallelnetworkpathways,oneusingthreedifferentwindowlevel/widthsettingstoenhancetheimagecon-trastofbrain,blood,andsofttissue.Theotherextractedspatialinformationofadjacentimageslicestothetargetslice.BothpathwaysexploitedtheEfficientNet-B0asthebasicarchitectureandwereensembledtogeneratethefinalprediction.Classacti-vationmappingwasappliedinbothpathwaystohighlighttheregionsofdetectedhemorrhageandtheassociatedsubtypes.ThemodelwastrainedandtestedusingIntracranialHemorrhageDetectionChallenge(IHDC)datasetlaunchedbytheRadiologicalSocietyofNorthAmerica(RSNA)in2019,whichcontained674,258headnoncontrastscomputertomographyimagesacquiredfrom19,530patients.Anindependentdataset(CQ500)acquiredfromanotherinstitutionwasusedtotestthegeneralizabilityofthetrainedmodel.Theoverallaccuracy,sensitivity,andF1scoreforintracranialhemorrhagedetectionwere95.7%,85.9%,and86.7%onIHDCtestingdatasetand92.4%,92.6%,and93.4%onexternalCQ500testingdataset.Theheatmapsbyclassacti-vationmappingsuccessfullydemonstrateddiscriminativefeatureregionsofthepredictedhemorrhagelocationsandsubtypes,providingvisualguidanceforradiologiststoassistinrapiddiagnosisofintracranialhemorrhage.","PeriodicalId":196434,"journal":{"name":"Journal of Artificial Intelligence for Medical Sciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence for Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/jaims.d.210618.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Rapid and accurate diagnosis of intracranial hemorrhage is clinically significant to ensure timely treatment. In this study, we developedanensembleddeepneuralnetworkforthedetectionandsubtypeclassificationofintracranialhemorrhage.Themodelconsistedoftwoparallelnetworkpathways,oneusingthreedifferentwindowlevel/widthsettingstoenhancetheimagecon-trastofbrain,blood,andsofttissue.Theotherextractedspatialinformationofadjacentimageslicestothetargetslice.BothpathwaysexploitedtheEfficientNet-B0asthebasicarchitectureandwereensembledtogeneratethefinalprediction.Classacti-vationmappingwasappliedinbothpathwaystohighlighttheregionsofdetectedhemorrhageandtheassociatedsubtypes.ThemodelwastrainedandtestedusingIntracranialHemorrhageDetectionChallenge(IHDC)datasetlaunchedbytheRadiologicalSocietyofNorthAmerica(RSNA)in2019,whichcontained674,258headnoncontrastscomputertomographyimagesacquiredfrom19,530patients.Anindependentdataset(CQ500)acquiredfromanotherinstitutionwasusedtotestthegeneralizabilityofthetrainedmodel.Theoverallaccuracy,sensitivity,andF1scoreforintracranialhemorrhagedetectionwere95.7%,85.9%,and86.7%onIHDCtestingdatasetand92.4%,92.6%,and93.4%onexternalCQ500testingdataset.Theheatmapsbyclassacti-vationmappingsuccessfullydemonstrateddiscriminativefeatureregionsofthepredictedhemorrhagelocationsandsubtypes,providingvisualguidanceforradiologiststoassistinrapiddiagnosisofintracranialhemorrhage.