Conservative behavioural modelling in systemc-AMS

S. Vinco, M. Lora, Mark Zwolinski
{"title":"Conservative behavioural modelling in systemc-AMS","authors":"S. Vinco, M. Lora, Mark Zwolinski","doi":"10.1109/FDL.2015.7306361","DOIUrl":null,"url":null,"abstract":"SystemC has recently been extended with the Analogue and Mixed Signal (AMS) library, with the ultimate goal of providing simulation support to analogue electronics and continuous time behaviours. SystemC-AMS allows modelling of systems that are either conservative and extremely low level or continuous time and behavioural, which is limited compared to other AMS HDLs. This work faces up this challenge, by extending SystemCAMS support to a new level of abstraction, called Analogue Behavioural Modelling (ABM), covering models that are both behavioural and conservative. This leads to a methodology that uses SystemC-AMS constructs in a novel way. Full automation of the methodology allows proof of its effectiveness both in terms of accuracy and simulation performance, and application of the overall approach to a complex industrial Micro Electro- Mechanical System (MEMS) case study. The effectiveness of the proposed approach is further highlighted in the context of virtual platforms for smart systems, as adopting a C++-based language for MEMS simulation reduces the simulation time by about 2x, thus enhancing the design and integration flow.","PeriodicalId":171448,"journal":{"name":"2015 Forum on Specification and Design Languages (FDL)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Forum on Specification and Design Languages (FDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FDL.2015.7306361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

SystemC has recently been extended with the Analogue and Mixed Signal (AMS) library, with the ultimate goal of providing simulation support to analogue electronics and continuous time behaviours. SystemC-AMS allows modelling of systems that are either conservative and extremely low level or continuous time and behavioural, which is limited compared to other AMS HDLs. This work faces up this challenge, by extending SystemCAMS support to a new level of abstraction, called Analogue Behavioural Modelling (ABM), covering models that are both behavioural and conservative. This leads to a methodology that uses SystemC-AMS constructs in a novel way. Full automation of the methodology allows proof of its effectiveness both in terms of accuracy and simulation performance, and application of the overall approach to a complex industrial Micro Electro- Mechanical System (MEMS) case study. The effectiveness of the proposed approach is further highlighted in the context of virtual platforms for smart systems, as adopting a C++-based language for MEMS simulation reduces the simulation time by about 2x, thus enhancing the design and integration flow.
系统- ams中的保守行为模型
SystemC最近扩展了模拟和混合信号(AMS)库,最终目标是为模拟电子和连续时间行为提供仿真支持。SystemC-AMS允许对保守和极低水平或连续时间和行为的系统进行建模,这与其他AMS hdl相比是有限的。这项工作将SystemCAMS支持扩展到一个新的抽象层次,称为模拟行为建模(ABM),涵盖行为模型和保守模型,从而面对这一挑战。这就产生了一种以新颖的方式使用SystemC-AMS结构的方法。该方法的完全自动化可以证明其在准确性和仿真性能方面的有效性,并将整体方法应用于复杂的工业微机电系统(MEMS)案例研究。在智能系统虚拟平台的背景下,采用基于c++的语言进行MEMS仿真可将仿真时间缩短约2倍,从而提高了设计和集成流程,从而进一步凸显了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信