Mobile robot guidance control with nonlinear observer based state estimation

N. Matsumoto, A. Toyoda, S. Ito
{"title":"Mobile robot guidance control with nonlinear observer based state estimation","authors":"N. Matsumoto, A. Toyoda, S. Ito","doi":"10.1109/IROS.1993.583942","DOIUrl":null,"url":null,"abstract":"This study focuses on a mobile robot guidance control system in which a mobile robot tracks the reference trajectory parallel to a guide wall. A laboratory mobile robot which has two driving wheels and two distance measurement sensors on each side to measure distances from the guide wall is considered. Because measured distances are influenced by noise such as guide wall undulations and mobile robot vibrations, a nonlinear observer based on the extended linearization method is adopted to estimate state variables in mobile robot motion dynamics. A mobile robot heading angle and lateral deviation estimation algorithm based on this nonlinear observer are proposed, and the observer stability condition is derived. The estimation algorithm combined with state feedback controller comprises the mobile robot guidance control system. Estimation and control performance of the system are evaluated with a simulation model and the laboratory mobile robot.","PeriodicalId":299306,"journal":{"name":"Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1993.583942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This study focuses on a mobile robot guidance control system in which a mobile robot tracks the reference trajectory parallel to a guide wall. A laboratory mobile robot which has two driving wheels and two distance measurement sensors on each side to measure distances from the guide wall is considered. Because measured distances are influenced by noise such as guide wall undulations and mobile robot vibrations, a nonlinear observer based on the extended linearization method is adopted to estimate state variables in mobile robot motion dynamics. A mobile robot heading angle and lateral deviation estimation algorithm based on this nonlinear observer are proposed, and the observer stability condition is derived. The estimation algorithm combined with state feedback controller comprises the mobile robot guidance control system. Estimation and control performance of the system are evaluated with a simulation model and the laboratory mobile robot.
基于非线性观测器状态估计的移动机器人制导控制
研究了一种移动机器人沿平行于导向墙的参考轨迹跟踪的移动机器人制导控制系统。研究了一种实验室移动机器人,该机器人具有两个驱动轮,两侧各有两个距离测量传感器,用于测量与导向壁的距离。由于测量距离受导壁波动和移动机器人振动等噪声的影响,采用基于扩展线性化方法的非线性观测器估计移动机器人运动动力学中的状态变量。提出了一种基于该非线性观测器的移动机器人航向角和侧向偏差估计算法,并推导了观测器的稳定性条件。该估计算法与状态反馈控制器相结合构成了移动机器人制导控制系统。利用仿真模型和实验室移动机器人对系统的估计和控制性能进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信