Aperture Resource Optimization Method for Low Sidelobe Linear Opportunistic Array Based on PSO-CVX Algorithm

Yanwei Zhang, Hailin Li, Yuanjin Tian, Xiao Dong, Ke Wang
{"title":"Aperture Resource Optimization Method for Low Sidelobe Linear Opportunistic Array Based on PSO-CVX Algorithm","authors":"Yanwei Zhang, Hailin Li, Yuanjin Tian, Xiao Dong, Ke Wang","doi":"10.1109/ICSPS58776.2022.00043","DOIUrl":null,"url":null,"abstract":"In this paper, a joint optimization method is proposed that comprehensively considers the low sidelobe pattern synthesis problem and the aperture resource saving problem of linear opportunistic array. Firstly, the fuzzy stochastic simulation algorithm is used to solve the uncertainty in the chance-constrained programming model. Then the particle swarm optimization algorithm is used to select the working array elements. As the array aperture is fixed, the convex optimization algorithm is used as the local algorithm to obtain the best excitation coefficient. The simulation results show that the algorithm proposed in this paper can obtain lower sidelobe level under the condition of saving aperture resources.","PeriodicalId":330562,"journal":{"name":"2022 14th International Conference on Signal Processing Systems (ICSPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Signal Processing Systems (ICSPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPS58776.2022.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a joint optimization method is proposed that comprehensively considers the low sidelobe pattern synthesis problem and the aperture resource saving problem of linear opportunistic array. Firstly, the fuzzy stochastic simulation algorithm is used to solve the uncertainty in the chance-constrained programming model. Then the particle swarm optimization algorithm is used to select the working array elements. As the array aperture is fixed, the convex optimization algorithm is used as the local algorithm to obtain the best excitation coefficient. The simulation results show that the algorithm proposed in this paper can obtain lower sidelobe level under the condition of saving aperture resources.
基于PSO-CVX算法的低旁瓣线性机会阵列孔径资源优化方法
本文提出了一种综合考虑线性机会阵低旁瓣方向图合成问题和孔径资源节约问题的联合优化方法。首先,利用模糊随机仿真算法求解机会约束规划模型中的不确定性。然后采用粒子群优化算法选择工作阵元。在阵列孔径固定的情况下,采用凸优化算法作为局部算法获得最佳激励系数。仿真结果表明,本文提出的算法在节省孔径资源的情况下可以获得较低的旁瓣电平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信