Nonseparability without Monotonicity: The Couterfactual Distribution M-Estimator for Causal Inference

Nir Billfeld, Moshe Kim
{"title":"Nonseparability without Monotonicity: The Couterfactual Distribution M-Estimator for Causal Inference","authors":"Nir Billfeld, Moshe Kim","doi":"10.2139/ssrn.3286538","DOIUrl":null,"url":null,"abstract":"Nonparametric identi�?cation strategy is employed to capture causal relationships without imposing any variant of monotonicity existing in the nonseparable nonlinear error model literature. This is important as when monotonicity is applied to the instrumental variables it limits their availability and when applied to the unobservables it can hardly be justi�?ed in the non-scalar case. Moreover, in cases where monotonicity is not satis�?ed the monotonicity-based estimators might be severely biased as shown in comparative Monte Carlo simulation. The key idea in the proposed identi�?cation and estimation strategy is to uncover the counterfactual distribution of the dependent variable, which is not directly observed in the data. We offer a two-step M-Estimator based on a resolution-dependent reproducing symmetric kernel density estimator rather than on the bandwidth-dependent classical kernel and thus, less sensitive to bandwidth choice. Additionally, the average marginal effect of the endogenous covariate on the outcome variable is identi�?ed directly from the noisy data which precludes the need to employ additional estimation steps thereby avoiding potential error accumulation. Asymptotic properties of the counterfactual M-Estimator are established.","PeriodicalId":189708,"journal":{"name":"Metaphysics eJournal","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metaphysics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3286538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nonparametric identi�?cation strategy is employed to capture causal relationships without imposing any variant of monotonicity existing in the nonseparable nonlinear error model literature. This is important as when monotonicity is applied to the instrumental variables it limits their availability and when applied to the unobservables it can hardly be justi�?ed in the non-scalar case. Moreover, in cases where monotonicity is not satis�?ed the monotonicity-based estimators might be severely biased as shown in comparative Monte Carlo simulation. The key idea in the proposed identi�?cation and estimation strategy is to uncover the counterfactual distribution of the dependent variable, which is not directly observed in the data. We offer a two-step M-Estimator based on a resolution-dependent reproducing symmetric kernel density estimator rather than on the bandwidth-dependent classical kernel and thus, less sensitive to bandwidth choice. Additionally, the average marginal effect of the endogenous covariate on the outcome variable is identi�?ed directly from the noisy data which precludes the need to employ additional estimation steps thereby avoiding potential error accumulation. Asymptotic properties of the counterfactual M-Estimator are established.
无单调不可分性:因果推理的反事实分布m -估计量
非参数一致格�?采用阳离子策略捕捉因果关系,而不施加不可分离非线性误差模型文献中存在的单调性的任何变体。这一点很重要,因为当单调性应用于工具变量时,它限制了它们的可用性,当应用于不可观察的变量时,它几乎不可能是公正的。非标量情况下的Ed。此外,在单调性不满足的情况下?然而,在蒙特卡罗比较模拟中显示,基于单调性的估计可能有严重的偏差。拟议身份的关键思想是?阳离子和估计策略是揭示因变量的反事实分布,这是不直接观察到的数据。我们提供了一个基于分辨率相关的再现对称核密度估计器的两步m估计器,而不是基于带宽相关的经典核,因此对带宽选择不太敏感。此外,内源性协变量对结果变量的平均边际效应是相同的。直接从有噪声的数据中提取,这就排除了使用额外估计步骤的需要,从而避免了潜在的误差积累。建立了反事实m估计量的渐近性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信