Aggressive design of ultra-shallow junction for near-scaling-limit bulk planar CMOS by using raised source/drain extension structure and carbon co-implantion technology

K. Uejima, K. Yako, T. Yamamoto, N. Ikarashi, S. Shishiguchi, T. Hase, M. Hane
{"title":"Aggressive design of ultra-shallow junction for near-scaling-limit bulk planar CMOS by using raised source/drain extension structure and carbon co-implantion technology","authors":"K. Uejima, K. Yako, T. Yamamoto, N. Ikarashi, S. Shishiguchi, T. Hase, M. Hane","doi":"10.1109/IWJT.2010.5474969","DOIUrl":null,"url":null,"abstract":"An aggressive junction design concept is proposed for further scaling of bulk planar CMOS featuring selectively epi-grown raised source/drain extensions (RSDext) in conjunction with high temperature millisecond annealing (MSA) process and carbon co-implantation. The junction design window enlarged by introducing the RSDext enables us to elaborately control slight \"intentional\" diffusion through the newly developed MSA process rather than aiming complete-diffusion-less junctions. Such the \"effective\" ultra-shallow junctions under the RSDext realized both lower parasitic resistance and lower junction leakage by eliminating current bottleneck and implant defects while maintaining superior short-channel-effect suppression. Cluster carbon co-implanted RSDext structure, which enables high boron concentration at the silicide interface and low deep halo dosage, was also effective to reduce parasitic resistance and junction leakage. We demonstrated sub-30 nm gate length CMOSFETs with one decade reduction of junction leakage, and 10% Ion improvement for both N and PFET by adapting closely positioned silicide to the gate edge (about 5 nm).","PeriodicalId":205070,"journal":{"name":"2010 International Workshop on Junction Technology Extended Abstracts","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Workshop on Junction Technology Extended Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWJT.2010.5474969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An aggressive junction design concept is proposed for further scaling of bulk planar CMOS featuring selectively epi-grown raised source/drain extensions (RSDext) in conjunction with high temperature millisecond annealing (MSA) process and carbon co-implantation. The junction design window enlarged by introducing the RSDext enables us to elaborately control slight "intentional" diffusion through the newly developed MSA process rather than aiming complete-diffusion-less junctions. Such the "effective" ultra-shallow junctions under the RSDext realized both lower parasitic resistance and lower junction leakage by eliminating current bottleneck and implant defects while maintaining superior short-channel-effect suppression. Cluster carbon co-implanted RSDext structure, which enables high boron concentration at the silicide interface and low deep halo dosage, was also effective to reduce parasitic resistance and junction leakage. We demonstrated sub-30 nm gate length CMOSFETs with one decade reduction of junction leakage, and 10% Ion improvement for both N and PFET by adapting closely positioned silicide to the gate edge (about 5 nm).
采用凸源/漏极延伸结构和碳共植入技术的近缩放极限块体平面CMOS超浅结大胆设计
提出了一种积极的结设计概念,用于进一步扩展具有选择性外延生长凸起源/漏极延伸(RSDext)的体平面CMOS,并结合高温毫秒退火(MSA)工艺和碳共植入。引入RSDext扩大了结设计窗口,使我们能够通过新开发的MSA工艺精心控制轻微的“故意”扩散,而不是瞄准完全无扩散的结。这种RSDext下的“有效”超浅结通过消除电流瓶颈和植入体缺陷,在保持优异的短通道效应抑制的同时,实现了更低的寄生电阻和更低的结漏。簇碳共植入的RSDext结构使硅化物界面硼浓度高,深晕剂量低,也能有效降低寄生电阻和结漏。我们展示了栅极长度低于30 nm的cmosfet,通过将紧密定位的硅化物调整到栅极边缘(约5 nm),将结漏减少了10年,并将N和fet的离子改善了10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信