Exploiting FDSOI Towards Minimum Energy Point Operation in Processors and Machine Learning Accelerators

M. Verhelst
{"title":"Exploiting FDSOI Towards Minimum Energy Point Operation in Processors and Machine Learning Accelerators","authors":"M. Verhelst","doi":"10.1109/ESSDERC.2018.8486865","DOIUrl":null,"url":null,"abstract":"The energy consumed by a processor to execute a certain task, depends strongly on several run-time conditions, such as the current workload, speed requirements, required computational precision, temperature, … For each possible scenario, it is possible to find a minimum energy operating point. In FDSOI technologies, this MEP is not only be influenced by the chip's supply voltage, but also by the technology's threshold voltage, tunable through the back bias. This increases the MEP exploration space, rendering much more optimal trade-offs.","PeriodicalId":355210,"journal":{"name":"ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2018.8486865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The energy consumed by a processor to execute a certain task, depends strongly on several run-time conditions, such as the current workload, speed requirements, required computational precision, temperature, … For each possible scenario, it is possible to find a minimum energy operating point. In FDSOI technologies, this MEP is not only be influenced by the chip's supply voltage, but also by the technology's threshold voltage, tunable through the back bias. This increases the MEP exploration space, rendering much more optimal trade-offs.
处理器执行某项任务所消耗的能量在很大程度上取决于几个运行时条件,如当前的工作负载、速度要求、所需的计算精度、温度……对于每一个可能的场景,都有可能找到一个最小能量工作点。在FDSOI技术中,MEP不仅受芯片电源电压的影响,还受技术阈值电压的影响,该阈值电压可通过后偏置进行调节。这增加了MEP的探索空间,呈现了更多的最佳权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信