Lasers developed in the Institute of Atmospheric Optics of the SB RAS (a review)

A. Fedorov
{"title":"Lasers developed in the Institute of Atmospheric Optics of the SB RAS (a review)","authors":"A. Fedorov","doi":"10.51368/2307-4469-2021-9-5-417-429","DOIUrl":null,"url":null,"abstract":"The results of research on the development of the first electric discharge lasers on active media N2, CO2, Cu, CuBr and excimer molecules at the Institute of Atmospheric Optics named after V. E. Zueva SB RAS are given. It created one of the world's first Cu-lasers with a pulse production of copper vapors due to the explosion of conductors and a transverse excitation discharge. For a copper laser, record specific generation parameters were obtained almost equal to the limit: radiation energy 2.4 J/l, peak power 120 MW/l with an efficiency of 0.16 %. For the CuBr laser operating in frequency mode, for the first time, an average radiation power of more than 100 W was obtained. In the dual pulse excitation mode, conditions were found that limit the growth of the efficiency of the CuBr laser. For him, a record efficiency of 2.7 % was obtained. For the first time, a nitrogen laser was developed with a maximum efficiency of 0.27 % with an \nenergy of 0.8 mJ, a peak power of 160 kW. For the first time, a miniature XeCl laser with a longitudinal excitation discharge was developed, which worked both with and without buffer gases He, Ne and Ar.","PeriodicalId":228648,"journal":{"name":"ADVANCES IN APPLIED PHYSICS","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADVANCES IN APPLIED PHYSICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51368/2307-4469-2021-9-5-417-429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The results of research on the development of the first electric discharge lasers on active media N2, CO2, Cu, CuBr and excimer molecules at the Institute of Atmospheric Optics named after V. E. Zueva SB RAS are given. It created one of the world's first Cu-lasers with a pulse production of copper vapors due to the explosion of conductors and a transverse excitation discharge. For a copper laser, record specific generation parameters were obtained almost equal to the limit: radiation energy 2.4 J/l, peak power 120 MW/l with an efficiency of 0.16 %. For the CuBr laser operating in frequency mode, for the first time, an average radiation power of more than 100 W was obtained. In the dual pulse excitation mode, conditions were found that limit the growth of the efficiency of the CuBr laser. For him, a record efficiency of 2.7 % was obtained. For the first time, a nitrogen laser was developed with a maximum efficiency of 0.27 % with an energy of 0.8 mJ, a peak power of 160 kW. For the first time, a miniature XeCl laser with a longitudinal excitation discharge was developed, which worked both with and without buffer gases He, Ne and Ar.
中国科学院大气光学研究所研制的激光器(综述)
本文介绍了Zueva SB RAS大气光学研究所在活性介质N2、CO2、Cu、CuBr和准分子上研制的第一台放电激光器的研究结果。它创造了世界上第一个铜激光器之一,由于导体爆炸和横向激发放电,铜蒸气的脉冲产生。对于铜激光器,获得的特定产生参数几乎等于极限:辐射能量2.4 J/l,峰值功率120 MW/l,效率为0.16%。对于工作在频率模式下的cur激光器,首次获得了超过100w的平均辐射功率。在双脉冲激发模式下,发现了限制cur激光器效率增长的条件。对他来说,获得了创纪录的2.7%的效率。首次研制出最高效率为0.27%、能量为0.8 mJ、峰值功率为160 kW的氮气激光器。首次研制了一种纵向激励放电的微型XeCl激光器,该激光器在有He、Ne和Ar缓冲气体和没有缓冲气体的情况下都能工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信