Numerical investigation of low level OSNR estimation based on gaussian fitting and non-linear least squares on AAH in noisy optical communication links

C. Castro, D. Peluffo O, O. M. Diaz, N. G. Guerrero
{"title":"Numerical investigation of low level OSNR estimation based on gaussian fitting and non-linear least squares on AAH in noisy optical communication links","authors":"C. Castro, D. Peluffo O, O. M. Diaz, N. G. Guerrero","doi":"10.1109/COLCOMCON.2012.6233657","DOIUrl":null,"url":null,"abstract":"An extended digital estimation approach of optical signal to noise ratio (OSNR) based on statistical analysis of asynchronous amplitude histograms (AAH) of the received optical signal is presented and numerically investigated. Accurate OSNR estimation on highly noisy optical transmission link is achieved. Furthermore, the proposed OSNR estimation approach may be digitally adjusted to any Cartesian modulation format such as multilevel phase shift keying and quadrature amplitude modulated optical signals without degrading estimation accuracy. The OSNR estimation methodology is based on kernel density estimation with Gaussian kernels and non-linear least-squares regression (NLLS). Heuristic searches are no longer needed and the process becomes more reliable and robust. Reported results show accurate OSNR estimation with less than 15% error estimation on the simulated OSNR value for different signal modulation formats, exhibiting a more confident estimation system, with comparable results among formats because of the statistical nature histogram instead of the regular counting bins histogram.","PeriodicalId":412983,"journal":{"name":"2012 IEEE Colombian Communications Conference (COLCOM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Colombian Communications Conference (COLCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COLCOMCON.2012.6233657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An extended digital estimation approach of optical signal to noise ratio (OSNR) based on statistical analysis of asynchronous amplitude histograms (AAH) of the received optical signal is presented and numerically investigated. Accurate OSNR estimation on highly noisy optical transmission link is achieved. Furthermore, the proposed OSNR estimation approach may be digitally adjusted to any Cartesian modulation format such as multilevel phase shift keying and quadrature amplitude modulated optical signals without degrading estimation accuracy. The OSNR estimation methodology is based on kernel density estimation with Gaussian kernels and non-linear least-squares regression (NLLS). Heuristic searches are no longer needed and the process becomes more reliable and robust. Reported results show accurate OSNR estimation with less than 15% error estimation on the simulated OSNR value for different signal modulation formats, exhibiting a more confident estimation system, with comparable results among formats because of the statistical nature histogram instead of the regular counting bins histogram.
基于高斯拟合和非线性最小二乘的噪声光通信链路AAH低水平OSNR估计数值研究
提出了一种基于接收光信号的异步幅度直方图(AAH)统计分析的光信噪比(OSNR)数字估计方法,并进行了数值研究。在高噪声光传输链路上实现了准确的OSNR估计。此外,所提出的OSNR估计方法可以数字调整到任何笛卡尔调制格式,如多电平相移键控和正交调幅光信号,而不会降低估计精度。OSNR估计方法是基于高斯核和非线性最小二乘回归的核密度估计。不再需要启发式搜索,过程变得更加可靠和健壮。报告的结果显示,对于不同的信号调制格式,准确的OSNR估计与模拟OSNR值的估计误差小于15%,显示出更有信心的估计系统,由于直方图的统计性质而不是常规计数箱直方图,不同格式的结果具有可比性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信