SAR Target Recognition with Data Fusion

Huan Ruohong, Mao Keji, Lei Yanjing, Yu Jiming, Xia Ming
{"title":"SAR Target Recognition with Data Fusion","authors":"Huan Ruohong, Mao Keji, Lei Yanjing, Yu Jiming, Xia Ming","doi":"10.1109/ICIE.2010.101","DOIUrl":null,"url":null,"abstract":"This paper presents an approach for synthetic aperture radar (SAR) target recognition with data fusion. The data of multi-aspect images of a target are fused by principal component analysis (PCA) or discrete wavelet transform (DWT) after preprocessing. Wavelet domain PCA is used to extract feature vectors from the fused data. Support vector machine (SVM) is applied to classify the extracted feature vectors. Experiments are implemented with three military targets in MSTAR database for analyzing the effects on recognition rate of targets caused by different number of images and aspect intervals in different fusion algorithms. The experimental results demonstrate the higher recognition rate of the proposed method than that of the method without data fusion. Therefore, the proposed method can be applied in SAR image target recognition effectively and advance recognition rate of targets significantly.","PeriodicalId":353239,"journal":{"name":"2010 WASE International Conference on Information Engineering","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 WASE International Conference on Information Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIE.2010.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents an approach for synthetic aperture radar (SAR) target recognition with data fusion. The data of multi-aspect images of a target are fused by principal component analysis (PCA) or discrete wavelet transform (DWT) after preprocessing. Wavelet domain PCA is used to extract feature vectors from the fused data. Support vector machine (SVM) is applied to classify the extracted feature vectors. Experiments are implemented with three military targets in MSTAR database for analyzing the effects on recognition rate of targets caused by different number of images and aspect intervals in different fusion algorithms. The experimental results demonstrate the higher recognition rate of the proposed method than that of the method without data fusion. Therefore, the proposed method can be applied in SAR image target recognition effectively and advance recognition rate of targets significantly.
基于数据融合的SAR目标识别
提出了一种基于数据融合的合成孔径雷达(SAR)目标识别方法。目标多方向图像的数据经预处理后,采用主成分分析(PCA)或离散小波变换(DWT)进行融合。采用小波域PCA从融合数据中提取特征向量。利用支持向量机(SVM)对提取的特征向量进行分类。以MSTAR数据库中的3个军事目标为实验对象,分析了不同融合算法中不同图像数量和aspect interval对目标识别率的影响。实验结果表明,该方法的识别率高于未进行数据融合的方法。因此,该方法可以有效地应用于SAR图像目标识别,显著提高了目标识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信