The combination of data as a strategy to determine the diversity of tomato subsambples

J. Aguilera, Bruno Garcia Marim, T. Setotaw, A. M. Zuffo, C. Nick, D. D. Silva
{"title":"The combination of data as a strategy to determine the diversity of tomato subsambples","authors":"J. Aguilera, Bruno Garcia Marim, T. Setotaw, A. M. Zuffo, C. Nick, D. D. Silva","doi":"10.26545/ajpr.2019.b00035x","DOIUrl":null,"url":null,"abstract":"The estimation of genetic diversity by qualitative, quantitative, and molecular data and their combination are important in characterizing germplasm collections for pre-breeding purposes, mainly for the identification of divergent parents. For this purpose, we assessed a population of 94 tomato subsamples from UFV Vegetable Germplasm Bank (BGH-UFV) using 10 ISSR markers and agronomic data (three qualitative and six quantitative traits). Data revealed the existence of genetic diversity in germplasm considering the three data classes. Principal coordinates analysis (PCoA) confirmed the genetic variability of the subsamples, explaining 27% of the variability in the first two PCoAs. The Bayesian based clustering analyses using the STRUTURE software verified the existence of a structured population, with three populations. The mantel test for the correlation produced by the three data classes showed highly significant correlation (r = 0.31, P<0.001) among quantitative and molecular data. The Tocher method of clustering for each dissimilarity matrices showed that the clustering patterns were dependent on the data classes. According to the results we found, it is possible to predict the best combinations of parents that can provide maximum gain in a breeding program. Besides the combine use of the quantitative, qualitative and molecular data, using multivariate and Bayesian method of clustering is an efficient method to study the genetic diversity of tomato plants in the germplasm bank. Key-words: Solanum lycopersicum, ISSR, Quantitative and Qualitative Data, Sum of Matrices, Population","PeriodicalId":108838,"journal":{"name":"Amazonian Journal of Plant Research","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Amazonian Journal of Plant Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26545/ajpr.2019.b00035x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The estimation of genetic diversity by qualitative, quantitative, and molecular data and their combination are important in characterizing germplasm collections for pre-breeding purposes, mainly for the identification of divergent parents. For this purpose, we assessed a population of 94 tomato subsamples from UFV Vegetable Germplasm Bank (BGH-UFV) using 10 ISSR markers and agronomic data (three qualitative and six quantitative traits). Data revealed the existence of genetic diversity in germplasm considering the three data classes. Principal coordinates analysis (PCoA) confirmed the genetic variability of the subsamples, explaining 27% of the variability in the first two PCoAs. The Bayesian based clustering analyses using the STRUTURE software verified the existence of a structured population, with three populations. The mantel test for the correlation produced by the three data classes showed highly significant correlation (r = 0.31, P<0.001) among quantitative and molecular data. The Tocher method of clustering for each dissimilarity matrices showed that the clustering patterns were dependent on the data classes. According to the results we found, it is possible to predict the best combinations of parents that can provide maximum gain in a breeding program. Besides the combine use of the quantitative, qualitative and molecular data, using multivariate and Bayesian method of clustering is an efficient method to study the genetic diversity of tomato plants in the germplasm bank. Key-words: Solanum lycopersicum, ISSR, Quantitative and Qualitative Data, Sum of Matrices, Population
结合数据作为确定番茄亚样本多样性的策略
通过定性、定量和分子数据及其组合来估计遗传多样性对种质资源的特征和育种前目的具有重要意义,主要是鉴定不同亲本。为此,我们利用10个ISSR标记和农艺数据(3个定性性状和6个定量性状)对来自UFV蔬菜种质库(BGH-UFV)的94个番茄亚样本群体进行了评估。考虑到这三个数据类别,数据显示种质资源存在遗传多样性。主坐标分析(PCoA)证实了子样本的遗传变异性,解释了前两个PCoA中27%的变异性。利用structure软件进行基于贝叶斯的聚类分析,验证了结构种群的存在,其中有三个种群。对三种数据类别产生的相关性进行mantel检验,结果显示定量数据与分子数据具有极显著的相关性(r = 0.31, P<0.001)。Tocher聚类方法对各不相似矩阵进行聚类,结果表明聚类模式依赖于数据类。根据我们发现的结果,可以预测在育种计划中能够提供最大收益的最佳亲本组合。除了定量、定性和分子数据的综合利用外,多元聚类和贝叶斯聚类方法是研究种质库中番茄植物遗传多样性的有效方法。关键词:番茄茄,ISSR,定量和定性数据,矩阵和,种群
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信