Non-deterministic Connectives in Propositional Godel Logic

O. Lahav, A. Avron
{"title":"Non-deterministic Connectives in Propositional Godel Logic","authors":"O. Lahav, A. Avron","doi":"10.2991/eusflat.2011.87","DOIUrl":null,"url":null,"abstract":"We define the notion of a canonical Godel system in the framework of single-conclusion hypersequent calculi. A corresponding general (nondeterministic) Godel valuation semantics is developed, as well as a (non-deterministic) linear intuitionistic Kripke-frames semantics. We show that every canonical Godel system induces a class of Godel valuations (and of Kripke frames) for which it is strongly sound and complete. The semantics is used to identify the canonical systems that enjoy (strong) cut-admissibility, and to provide a decision procedure for these systems. The results of this paper characterize, both proof-theoretically and semantically, a large family of (non-deterministic) connectives that can be added to propositional Godel logic.","PeriodicalId":403191,"journal":{"name":"EUSFLAT Conf.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EUSFLAT Conf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/eusflat.2011.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We define the notion of a canonical Godel system in the framework of single-conclusion hypersequent calculi. A corresponding general (nondeterministic) Godel valuation semantics is developed, as well as a (non-deterministic) linear intuitionistic Kripke-frames semantics. We show that every canonical Godel system induces a class of Godel valuations (and of Kripke frames) for which it is strongly sound and complete. The semantics is used to identify the canonical systems that enjoy (strong) cut-admissibility, and to provide a decision procedure for these systems. The results of this paper characterize, both proof-theoretically and semantically, a large family of (non-deterministic) connectives that can be added to propositional Godel logic.
命题哥德尔逻辑中的非确定性连接词
在单结论超序演算的框架下,定义了正则哥德尔系统的概念。一个相应的一般(不确定的)哥德尔值语义,以及一个(不确定的)线性直觉的Kripke-frames语义。我们证明了每一个正则哥德尔系统都归纳出一类哥德尔赋值(和Kripke框架),对于这些赋值它是强健全和完备的。该语义用于识别具有(强)切容许性的规范系统,并为这些系统提供决策过程。本文的结果,在证明理论和语义上,刻画了一个可以添加到命题哥德尔逻辑的(非确定性)连接词族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信