Hierarchical methods for global-scale estimation problems

P. Fieguth, M. Allen, M. J. Murray
{"title":"Hierarchical methods for global-scale estimation problems","authors":"P. Fieguth, M. Allen, M. J. Murray","doi":"10.1109/CCECE.1998.682707","DOIUrl":null,"url":null,"abstract":"There is a substantial signal-processing challenge associated with large-scale (especially global-scale) remote-sensing problems: solving the statistical inverse problem (i.e. deducing the properties of the sensed field from measurements) by brute force, that is by covariance matrix inversion, is completely impractical for fields involving millions of pixels. This paper reports on the ongoing development of an alternative technique, in which the statistical problem is modeled on a multiscale tree, applied to estimating sea-surface temperature (SST) based on infrared radiance observations from the along-track scanning radiometers (ATSRs).","PeriodicalId":177613,"journal":{"name":"Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.1998.682707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

There is a substantial signal-processing challenge associated with large-scale (especially global-scale) remote-sensing problems: solving the statistical inverse problem (i.e. deducing the properties of the sensed field from measurements) by brute force, that is by covariance matrix inversion, is completely impractical for fields involving millions of pixels. This paper reports on the ongoing development of an alternative technique, in which the statistical problem is modeled on a multiscale tree, applied to estimating sea-surface temperature (SST) based on infrared radiance observations from the along-track scanning radiometers (ATSRs).
全局尺度估计问题的层次方法
与大规模(特别是全球尺度)遥感问题相关的重大信号处理挑战:通过蛮力,即通过协方差矩阵反演,解决统计逆问题(即从测量中推断感测场的属性),对于涉及数百万像素的领域是完全不切实际的。本文报道了一种基于沿航迹扫描辐射计(ATSRs)红外辐射观测数据估算海表温度(SST)的替代技术,该技术将统计问题建模为多尺度树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信