A 4-fold categorical equivalence

Ray Maresca
{"title":"A 4-fold categorical equivalence","authors":"Ray Maresca","doi":"10.1090/bproc/178","DOIUrl":null,"url":null,"abstract":"In this note, we will illuminate some immediate consequences of work done by Reineke in [Algebr. Represent. Theory 16 (2013), no. 5. 1313–1314] that may prove to be useful in the study of elliptic curves. In particular, we will construct an isomorphism between the category of smooth projective curves with a category of quiver Grassmannians. We will use this to provide a 4-fold categorical equivalence between a category of quiver Grassmannians, smooth projective curves, compact Riemann surfaces, and fields of transcendence degree 1 over \n\n \n \n C\n \n \\mathbb {C}\n \n\n. We finish with noting that the category of elliptic curves is isomorphic to a category of quiver Grassmannians, whence providing an analytic group structure to a class of quiver Grassmannians.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this note, we will illuminate some immediate consequences of work done by Reineke in [Algebr. Represent. Theory 16 (2013), no. 5. 1313–1314] that may prove to be useful in the study of elliptic curves. In particular, we will construct an isomorphism between the category of smooth projective curves with a category of quiver Grassmannians. We will use this to provide a 4-fold categorical equivalence between a category of quiver Grassmannians, smooth projective curves, compact Riemann surfaces, and fields of transcendence degree 1 over C \mathbb {C} . We finish with noting that the category of elliptic curves is isomorphic to a category of quiver Grassmannians, whence providing an analytic group structure to a class of quiver Grassmannians.
四重分类等价
在本说明中,我们将阐明赖内克在[Algebr. Represent. Theory 16 (2013),no. 5. 1313-1314]中所做工作的一些直接后果,这些后果可能被证明对椭圆曲线研究有用。特别是,我们将在光滑投影曲线范畴与四分格拉斯曼范畴之间构建一个同构。我们将利用这一点,在quiver Grassmannians、光滑射影曲线、紧凑黎曼曲面和C \mathbb {C} 上的超越度为1的域之间提供一个4折分类等价。最后,我们指出椭圆曲线范畴与四维格拉斯曼范畴同构,从而为四维格拉斯曼范畴提供了一个解析群结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信