Cleaning Up the Errors in the Monthly "Employment Situation" Report: A Multivariate State-Space Approach

Labor eJournal Pub Date : 1997-12-01 DOI:10.2139/ssrn.69416
M. W. French
{"title":"Cleaning Up the Errors in the Monthly \"Employment Situation\" Report: A Multivariate State-Space Approach","authors":"M. W. French","doi":"10.2139/ssrn.69416","DOIUrl":null,"url":null,"abstract":"This paper examines the underlying state of the labor market, assuming data in the monthly \"Employment Situation\" are contaminated by measurement error and other transient noise. To better filter out unobserved noise, the methodology exploits correlations among labor-market series. Household employment and labor force have cross-correlated sampling errors; establishment employment and hours worked may also. The Kalman filtering procedure also exploits fundamental economic relationships among these series. Error cross-correlations and economic relationships shape a multivariate labor-market model where observed variables embody unobserved components: trend, cycle and noise. Maximum-likelihood estimation enables construction of labor series from which noise components have been removed.","PeriodicalId":114523,"journal":{"name":"Labor eJournal","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Labor eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.69416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper examines the underlying state of the labor market, assuming data in the monthly "Employment Situation" are contaminated by measurement error and other transient noise. To better filter out unobserved noise, the methodology exploits correlations among labor-market series. Household employment and labor force have cross-correlated sampling errors; establishment employment and hours worked may also. The Kalman filtering procedure also exploits fundamental economic relationships among these series. Error cross-correlations and economic relationships shape a multivariate labor-market model where observed variables embody unobserved components: trend, cycle and noise. Maximum-likelihood estimation enables construction of labor series from which noise components have been removed.
月度“就业状况”报告中的错误清理:一种多元状态空间方法
本文考察了劳动力市场的基本状态,假设每月“就业状况”中的数据受到测量误差和其他瞬态噪声的污染。为了更好地过滤掉未观察到的噪声,该方法利用了劳动力市场系列之间的相关性。家庭就业与劳动力存在交叉相关的抽样误差;用人单位和工作时间也可以。卡尔曼滤波程序也利用这些序列之间的基本经济关系。误差相互关联和经济关系形成了一个多元劳动力市场模型,其中观察到的变量包含了未观察到的成分:趋势、周期和噪声。最大似然估计可以构建去除噪声成分的劳动序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信