Analysis and Classification of Patients with Acute Myocardial Infarction by Using Nonlinear Mixed-Effects Modeling

A. Procopio, A. Merola, C. Cosentino, S. D. Rosa, G. Canino, J. Sabatino, Jessica Ielapi, C. Indolfi, Francesco Amato
{"title":"Analysis and Classification of Patients with Acute Myocardial Infarction by Using Nonlinear Mixed-Effects Modeling","authors":"A. Procopio, A. Merola, C. Cosentino, S. D. Rosa, G. Canino, J. Sabatino, Jessica Ielapi, C. Indolfi, Francesco Amato","doi":"10.1109/rtsi50628.2021.9597279","DOIUrl":null,"url":null,"abstract":"In this preliminary study, the nonlinear mixed-effects modeling-based methodology has been chosen to investigate and evaluate the possible implication of some clinical cofactors on the release of biomarker cardiac troponin T (cTnT) in patients with acute myocardial infarction (AMI) and ST-segment elevation (STEMI). The aim of the study consists of the identification of subclasses of STEMI patients with different characteristics and, potentially, different clinical or pharmacological needs. An ad-hoc mathematical model, describing the biomarker release process subsequent to AMI, has been devised and exploited to estimate typical parameter values, and to evaluate the impact of covariates on the cTnT release curve. Among all the available co-factors, the mixed-effect analysis has found dyslipidemia to be a statistically significant one. More specifically, it has highlighted a relevant effect on the model parameters related to cTnT clearance. By increasing the number of co-factors, and enlarging the patients dataset, this approach may be useful in the automatic categorization and to unravel potentially unknown interactions between cofactors in AMI patients.","PeriodicalId":294628,"journal":{"name":"2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/rtsi50628.2021.9597279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this preliminary study, the nonlinear mixed-effects modeling-based methodology has been chosen to investigate and evaluate the possible implication of some clinical cofactors on the release of biomarker cardiac troponin T (cTnT) in patients with acute myocardial infarction (AMI) and ST-segment elevation (STEMI). The aim of the study consists of the identification of subclasses of STEMI patients with different characteristics and, potentially, different clinical or pharmacological needs. An ad-hoc mathematical model, describing the biomarker release process subsequent to AMI, has been devised and exploited to estimate typical parameter values, and to evaluate the impact of covariates on the cTnT release curve. Among all the available co-factors, the mixed-effect analysis has found dyslipidemia to be a statistically significant one. More specifically, it has highlighted a relevant effect on the model parameters related to cTnT clearance. By increasing the number of co-factors, and enlarging the patients dataset, this approach may be useful in the automatic categorization and to unravel potentially unknown interactions between cofactors in AMI patients.
非线性混合效应模型在急性心肌梗死患者分析与分类中的应用
在这项初步研究中,我们选择了基于非线性混合效应模型的方法来研究和评估一些临床辅助因子对急性心肌梗死(AMI)和st段抬高(STEMI)患者生物标志物心肌肌钙蛋白T (cTnT)释放的可能影响。该研究的目的包括鉴定具有不同特征和潜在的不同临床或药理需求的STEMI患者亚类。一个特别的数学模型,描述AMI后的生物标志物释放过程,已经被设计和利用来估计典型参数值,并评估协变量对cTnT释放曲线的影响。在所有可用的辅助因素中,混合效应分析发现血脂异常具有统计学意义。更具体地说,它强调了与cTnT清除相关的模型参数的相关影响。通过增加辅助因素的数量,并扩大患者数据集,该方法可能有助于自动分类,并揭示AMI患者辅助因素之间潜在的未知相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信