Moving object classifier based on UWB radar signal

Chong Hyun Lee, Youn Joung Kang, Jinho Bae, Seung Wook Lee, Jungchae Shin, Jin Woo Jung
{"title":"Moving object classifier based on UWB radar signal","authors":"Chong Hyun Lee, Youn Joung Kang, Jinho Bae, Seung Wook Lee, Jungchae Shin, Jin Woo Jung","doi":"10.5220/0004488801850190","DOIUrl":null,"url":null,"abstract":"A novel moving object classification system using UWB radar and classifier based on decision tree structure are proposed. By using the proposed radar system, we construct UWB radar signal database by considering two movements and four moving directions of human and dog. The proposed classifier is based on nonlinear support vector machine (SVM) using RBF kernel and use linear predictive code (LPC) coefficients as feature vector. By evaluating performance of the proposed decision tree structures, we obtain the best classification results when the first level SVM classifies type of movement and then the second level SVM classifies moving object. The correct classification probability ranges from 93% up to 97%. The proposed system and classifier can be used for efficient human and dog classification and can be applied to other moving objects classification as well.","PeriodicalId":167010,"journal":{"name":"2013 International Conference on Wireless Information Networks and Systems (WINSYS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Wireless Information Networks and Systems (WINSYS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0004488801850190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A novel moving object classification system using UWB radar and classifier based on decision tree structure are proposed. By using the proposed radar system, we construct UWB radar signal database by considering two movements and four moving directions of human and dog. The proposed classifier is based on nonlinear support vector machine (SVM) using RBF kernel and use linear predictive code (LPC) coefficients as feature vector. By evaluating performance of the proposed decision tree structures, we obtain the best classification results when the first level SVM classifies type of movement and then the second level SVM classifies moving object. The correct classification probability ranges from 93% up to 97%. The proposed system and classifier can be used for efficient human and dog classification and can be applied to other moving objects classification as well.
基于超宽带雷达信号的运动目标分类器
提出了一种基于超宽带雷达和基于决策树结构的分类器的运动目标分类系统。利用所提出的雷达系统,我们考虑了人和狗的两个运动和四个运动方向,构建了超宽带雷达信号数据库。该分类器基于基于RBF核的非线性支持向量机(SVM),并以线性预测码(LPC)系数作为特征向量。通过对所提决策树结构的性能进行评价,得到了一级支持向量机对运动类型进行分类,二级支持向量机对运动对象进行分类的最佳分类结果。正确的分类概率范围从93%到97%。所提出的系统和分类器可以用于高效的人和狗分类,也可以应用于其他运动物体的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信