Embedded Emotion Recognition System Based on Electrocardiogram Attributes

Wiem Mimoun Ben Henia, Z. Lachiri
{"title":"Embedded Emotion Recognition System Based on Electrocardiogram Attributes","authors":"Wiem Mimoun Ben Henia, Z. Lachiri","doi":"10.1109/TSP.2018.8441234","DOIUrl":null,"url":null,"abstract":"Investigated research proved the relevance of the analysis of physiological signals to detect human emotional states. This paper presents an embedded emotion recognition system based on electrocardiogram attributes. We applied the Support Vector Machine (SVM) with a subject independent classification and we implemented the whole proposed system on the Raspberry Pi 3 model B. This System can be easily mounted on robots for an affective Human-Machine interactivity. Thus, we explored the multimodal MAHNOB-HCI database for the two-class problem discrimination in the Arousal-Valence space. After using the ten cross-validations and testing several SVM’ kernels, the average classification rates were 57.01% and 54.07% for arousal and valence, respectively.","PeriodicalId":383018,"journal":{"name":"2018 41st International Conference on Telecommunications and Signal Processing (TSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 41st International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2018.8441234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Investigated research proved the relevance of the analysis of physiological signals to detect human emotional states. This paper presents an embedded emotion recognition system based on electrocardiogram attributes. We applied the Support Vector Machine (SVM) with a subject independent classification and we implemented the whole proposed system on the Raspberry Pi 3 model B. This System can be easily mounted on robots for an affective Human-Machine interactivity. Thus, we explored the multimodal MAHNOB-HCI database for the two-class problem discrimination in the Arousal-Valence space. After using the ten cross-validations and testing several SVM’ kernels, the average classification rates were 57.01% and 54.07% for arousal and valence, respectively.
基于心电图属性的嵌入式情感识别系统
调查研究证明了生理信号分析与检测人类情绪状态的相关性。提出了一种基于心电图属性的嵌入式情感识别系统。我们应用了主题独立分类的支持向量机(SVM),并在树莓派3模型b上实现了整个系统。该系统可以很容易地安装在机器人上,以实现有效的人机交互。因此,我们探索了多模态MAHNOB-HCI数据库用于唤醒价空间的两类问题判别。使用10个交叉验证并测试多个SVM核后,唤醒和效价的平均分类率分别为57.01%和54.07%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信