Numerical prediction of rotor-stator interaction noise using 3D CAA with synthetic turbulence injection

Adil Cader, C. Polacsek, T. L. Garrec, R. Barrier, F. Benjamin, Marc C. Jacob
{"title":"Numerical prediction of rotor-stator interaction noise using 3D CAA with synthetic turbulence injection","authors":"Adil Cader, C. Polacsek, T. L. Garrec, R. Barrier, F. Benjamin, Marc C. Jacob","doi":"10.2514/6.2018-4190","DOIUrl":null,"url":null,"abstract":"Turbulent RSI (rotor-stator interaction) mechanism is a major broadband source contribution of turbofan noise generation. Acoustic prediction tools used by Industry are based on flat-plate cascade response models with restrictive assumptions on flow and geometry. Due to huge CPU memory and time cost required, Large Eddy Simulations of the complete fan-OGV stage are still out of reach (apart from recent impressive results obtained using the Lattice Boltzmann Method). This paper presents an alternative approach based on the use of a 3-D CAA (Computational Aeroacoustics) code solving the linearized-Euler equations applied to the disturbances and coupled with a synthetic turbulence injection model. The inflow turbulence is synthetized by means of a sum of harmonic gusts with random phases. The Fourier-mode amplitudes are trimmed by a 2 or 3-wave number Von-Karman or Liepmann turbulence spectrum. Swirling convection of the synthetic turbulence is provided by a 3D RANS mean flow solution and interpolated at the nodes of the CAA grid. In this paper, our methodology is first validated on a benchmark case (fully annular duct with swirling flow and a prescribed turbulence) and then applied for the first time to an industrial turbofan in the framework of a European project, TurboNoiseBB. Previous implemented 2D formulation (2-wave number spectrum) for turbulence generation is extended here to 3D (axial, radial, and angular modes) in order to study the sensitivity on cascade effects.","PeriodicalId":429337,"journal":{"name":"2018 AIAA/CEAS Aeroacoustics Conference","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 AIAA/CEAS Aeroacoustics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2018-4190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Turbulent RSI (rotor-stator interaction) mechanism is a major broadband source contribution of turbofan noise generation. Acoustic prediction tools used by Industry are based on flat-plate cascade response models with restrictive assumptions on flow and geometry. Due to huge CPU memory and time cost required, Large Eddy Simulations of the complete fan-OGV stage are still out of reach (apart from recent impressive results obtained using the Lattice Boltzmann Method). This paper presents an alternative approach based on the use of a 3-D CAA (Computational Aeroacoustics) code solving the linearized-Euler equations applied to the disturbances and coupled with a synthetic turbulence injection model. The inflow turbulence is synthetized by means of a sum of harmonic gusts with random phases. The Fourier-mode amplitudes are trimmed by a 2 or 3-wave number Von-Karman or Liepmann turbulence spectrum. Swirling convection of the synthetic turbulence is provided by a 3D RANS mean flow solution and interpolated at the nodes of the CAA grid. In this paper, our methodology is first validated on a benchmark case (fully annular duct with swirling flow and a prescribed turbulence) and then applied for the first time to an industrial turbofan in the framework of a European project, TurboNoiseBB. Previous implemented 2D formulation (2-wave number spectrum) for turbulence generation is extended here to 3D (axial, radial, and angular modes) in order to study the sensitivity on cascade effects.
基于合成湍流注入的三维CAA的动静相互作用噪声数值预测
湍流RSI(动静相互作用)机制是涡扇噪声产生的主要宽带源贡献。工业界使用的声学预测工具基于平板级联响应模型,并对流动和几何形状进行了限制性假设。由于需要巨大的CPU内存和时间成本,完整的风扇- ogv阶段的大涡模拟仍然遥不可及(除了最近使用晶格玻尔兹曼方法获得的令人印象深刻的结果)。本文提出了一种基于三维CAA(计算气动声学)代码的替代方法,该方法求解应用于扰动的线性化欧拉方程,并与合成湍流注入模型相结合。入流湍流是用随机相位的谐波阵风和来合成的。傅里叶模振幅由2或3波数冯-卡门或李普曼湍流谱修剪。合成湍流的旋涡对流由三维RANS平均流解提供,并在CAA网格节点上插值。在本文中,我们的方法首先在基准案例(具有旋流和规定湍流的全环形管道)上进行了验证,然后首次应用于欧洲TurboNoiseBB项目框架下的工业涡轮风扇。为了研究对级联效应的敏感性,本文将之前实现的二维湍流生成公式(2波数谱)扩展到三维(轴向、径向和角向模式)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信