Detection of valuable left-behind items in vehicle cabins

Toby Perrett, M. Mirmehdi, Eduardo Dias
{"title":"Detection of valuable left-behind items in vehicle cabins","authors":"Toby Perrett, M. Mirmehdi, Eduardo Dias","doi":"10.1109/IVS.2017.7995862","DOIUrl":null,"url":null,"abstract":"We propose a method for detecting valuable left-behind items in vehicle cabins which uses a single overhead camera. An additional sub-network is incorporated into the Faster R-CNN framework in order to allow it to estimate item value based on visual properties, as well as to perform detection. A loss function which contains a user-specified minimum-value threshold is introduced, which enables warnings to be given if a detected item is above this threshold. As a significant amount of real data is time consuming to collect on the scale necessary for (deep) learning-based methods, an ImageNet model is first retrained on synthetic data to adapt it to our environment, before training on some real data. The effectiveness of this detection and validation approach is demonstrated by integrating additional valuation subnetworks into two convolutional neural network detection architectures.","PeriodicalId":143367,"journal":{"name":"2017 IEEE Intelligent Vehicles Symposium (IV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2017.7995862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a method for detecting valuable left-behind items in vehicle cabins which uses a single overhead camera. An additional sub-network is incorporated into the Faster R-CNN framework in order to allow it to estimate item value based on visual properties, as well as to perform detection. A loss function which contains a user-specified minimum-value threshold is introduced, which enables warnings to be given if a detected item is above this threshold. As a significant amount of real data is time consuming to collect on the scale necessary for (deep) learning-based methods, an ImageNet model is first retrained on synthetic data to adapt it to our environment, before training on some real data. The effectiveness of this detection and validation approach is demonstrated by integrating additional valuation subnetworks into two convolutional neural network detection architectures.
检测车内遗留的贵重物品
我们提出了一种检测车内遗留物品的方法,该方法使用单个顶置摄像头。一个额外的子网络被纳入到Faster R-CNN框架中,以允许它根据视觉属性估计项目值,并执行检测。引入了包含用户指定的最小值阈值的损失函数,如果检测到的项目超过该阈值,则可以给出警告。由于收集大量的真实数据对于(深度)学习方法来说是非常耗时的,所以ImageNet模型首先在合成数据上进行再训练,以使其适应我们的环境,然后再对一些真实数据进行训练。通过将附加估值子网络集成到两个卷积神经网络检测体系结构中,证明了这种检测和验证方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信