Theoretic Background of Computer Solution of Combinatorial and Geometric Configuration Problems

O. Pichugina
{"title":"Theoretic Background of Computer Solution of Combinatorial and Geometric Configuration Problems","authors":"O. Pichugina","doi":"10.1109/PICST54195.2021.9772223","DOIUrl":null,"url":null,"abstract":"We develop theoretical foundations for computer solving configuration theory problems using general-purpose nonlinear programming solvers. The problems related to the existence and isomorphism of combinatorial and geometric configurations on a plane are formulated as continuous nonlinear programs. It is done with the help of continuous functional representations of different Boolean sets. The computer experiment is designed where the continuous optimization and feasibility formulation are utilized and IPOPT solver implemented in the Python package Gekko is applied.","PeriodicalId":391592,"journal":{"name":"2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICST54195.2021.9772223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop theoretical foundations for computer solving configuration theory problems using general-purpose nonlinear programming solvers. The problems related to the existence and isomorphism of combinatorial and geometric configurations on a plane are formulated as continuous nonlinear programs. It is done with the help of continuous functional representations of different Boolean sets. The computer experiment is designed where the continuous optimization and feasibility formulation are utilized and IPOPT solver implemented in the Python package Gekko is applied.
组合与几何组形问题计算机解的理论背景
我们发展的理论基础,计算机解决组态理论问题,使用通用非线性规划求解。将平面上的组合构型和几何构型的存在性和同构性问题表述为连续的非线性规划。它是借助不同布尔集的连续函数表示来完成的。设计了计算机实验,利用连续优化和可行性公式,使用Python包Gekko实现IPOPT求解器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信