Edge Inference Engine for Deep & Random Sparse Neural Networks with 4-bit Cartesian-Product MAC Array and Pipelined Activation Aligner

Kota Ando, Jaehoon Yu, Kazutoshi Hirose, Hiroki Nakahara, Kazushi Kawamura, Thiem Van Chu, M. Motomura
{"title":"Edge Inference Engine for Deep & Random Sparse Neural Networks with 4-bit Cartesian-Product MAC Array and Pipelined Activation Aligner","authors":"Kota Ando, Jaehoon Yu, Kazutoshi Hirose, Hiroki Nakahara, Kazushi Kawamura, Thiem Van Chu, M. Motomura","doi":"10.1109/HCS52781.2021.9567328","DOIUrl":null,"url":null,"abstract":"A 4b-quantized convolutional neural network (CNN) inference engine for edge-AI is presented featuring a Cartesian-product MAC array and pipelined activation aligners targeting deep-/random-pruned models. A 40nm prototype with 32x32 MACs and 5Mb SRAM runs at 534 MHz, 1.07 TOPS, 352 mW at 1.1V, and attains 5.30 dense TOPS/W, 234 MHz at 0.8V. Sparse TOPS/W reaches 26.5 when running a randomly pruned model (after 88% pruning). Training algorithms for obtaining highly efficient sparse/quantized models are also proposed.","PeriodicalId":246531,"journal":{"name":"2021 IEEE Hot Chips 33 Symposium (HCS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Hot Chips 33 Symposium (HCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HCS52781.2021.9567328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A 4b-quantized convolutional neural network (CNN) inference engine for edge-AI is presented featuring a Cartesian-product MAC array and pipelined activation aligners targeting deep-/random-pruned models. A 40nm prototype with 32x32 MACs and 5Mb SRAM runs at 534 MHz, 1.07 TOPS, 352 mW at 1.1V, and attains 5.30 dense TOPS/W, 234 MHz at 0.8V. Sparse TOPS/W reaches 26.5 when running a randomly pruned model (after 88% pruning). Training algorithms for obtaining highly efficient sparse/quantized models are also proposed.
基于4位笛卡尔积MAC阵列和流水线激活对齐器的深度随机稀疏神经网络边缘推理引擎
提出了一种用于边缘人工智能的4b量化卷积神经网络(CNN)推理引擎,该引擎采用笛卡尔积MAC阵列和针对深度/随机修剪模型的流水线激活对齐器。具有32x32 mac和5Mb SRAM的40nm原型机在1.1V下运行534 MHz, 1.07 TOPS, 352 mW,并在0.8V下达到5.30 dense TOPS/W, 234 MHz。运行随机剪枝模型时(剪枝88%后),Sparse TOPS/W达到26.5。本文还提出了获得高效稀疏/量化模型的训练算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信