Exponentially stabilizing finite-dimensional controllers for linear distributed parameter systems

M. Balas
{"title":"Exponentially stabilizing finite-dimensional controllers for linear distributed parameter systems","authors":"M. Balas","doi":"10.1109/CDC.1984.272298","DOIUrl":null,"url":null,"abstract":"The Galerkin method is presented as a way to develop finite-dimensional controllers for linear distributed parameter systems (DPS). The direct approach approximates the open-loop DPS and then generates the controller from this approximation; the indirect approach approximates the infinite-dimensional stabilizing controller. The indirect approach is shown to converge to the stable closed-loop system consisting of DPS and infinite-dimensional controller; conditions are presented on the behavior of the Galerkin method for the open loop DPS which guarantee closed-loop stability for large enough finite-dimensional approximations.","PeriodicalId":269680,"journal":{"name":"The 23rd IEEE Conference on Decision and Control","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1984-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 23rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1984.272298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Galerkin method is presented as a way to develop finite-dimensional controllers for linear distributed parameter systems (DPS). The direct approach approximates the open-loop DPS and then generates the controller from this approximation; the indirect approach approximates the infinite-dimensional stabilizing controller. The indirect approach is shown to converge to the stable closed-loop system consisting of DPS and infinite-dimensional controller; conditions are presented on the behavior of the Galerkin method for the open loop DPS which guarantee closed-loop stability for large enough finite-dimensional approximations.
线性分布参数系统的指数稳定有限维控制器
伽辽金方法是一种开发线性分布参数系统(DPS)有限维控制器的方法。直接逼近开环DPS,然后根据这个逼近生成控制器;间接逼近无限维稳定控制器。间接方法收敛于由DPS和无限维控制器组成的稳定闭环系统;给出了开环DPS的伽辽金方法在足够大的有限维近似下具有闭环稳定性的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信