Classification of asphyxia & ventricular fibrillation induced cardiac arrest for cardiopulmonary resuscitation

D. Bender, R. Morgan, V. Nadkarni, C. Nataraj
{"title":"Classification of asphyxia & ventricular fibrillation induced cardiac arrest for cardiopulmonary resuscitation","authors":"D. Bender, R. Morgan, V. Nadkarni, C. Nataraj","doi":"10.1109/HIC.2017.8227625","DOIUrl":null,"url":null,"abstract":"In this study we address an important pediatric cardiopulmonary resuscitation problem to identify the cause of a cardiac arrest during the beginning of cardiopulmonary resuscitation. A support vector algorithm was trained and tested using a feature set constructed through wavelet transform analysis of experimental electrocardiography and heart rate data provided by Children's Hospital of Philadelphia. The approach developed in this study yielded an average classification accuracy above 93%.","PeriodicalId":120815,"journal":{"name":"2017 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIC.2017.8227625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study we address an important pediatric cardiopulmonary resuscitation problem to identify the cause of a cardiac arrest during the beginning of cardiopulmonary resuscitation. A support vector algorithm was trained and tested using a feature set constructed through wavelet transform analysis of experimental electrocardiography and heart rate data provided by Children's Hospital of Philadelphia. The approach developed in this study yielded an average classification accuracy above 93%.
在这项研究中,我们解决了一个重要的儿科心肺复苏问题,以确定在心肺复苏开始时心脏骤停的原因。利用对费城儿童医院提供的实验心电图和心率数据进行小波变换分析构建的特征集,对支持向量算法进行训练和测试。本研究中开发的方法产生了93%以上的平均分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信