DRC Hotspot Prediction at Sub-10nm Process Nodes Using Customized Convolutional Network

Rongjian Liang, Hua Xiang, Diwesh Pandey, L. Reddy, Shyam Ramji, Gi-Joon Nam, Jiang Hu
{"title":"DRC Hotspot Prediction at Sub-10nm Process Nodes Using Customized Convolutional Network","authors":"Rongjian Liang, Hua Xiang, Diwesh Pandey, L. Reddy, Shyam Ramji, Gi-Joon Nam, Jiang Hu","doi":"10.1145/3372780.3375560","DOIUrl":null,"url":null,"abstract":"As the semiconductor process technology advances into sub-10nm regime, cell pin accessibility, which is a complex joint effect from the pin shape and nearby blockages, becomes a main cause for DRC violations. Therefore, a machine learning model for DRC hotspot prediction needs to consider both very high-resolution pin shape patterns and low-resolution layout information as input features. A new convolutional neural network technique, J-Net, is introduced for the prediction with mixed resolution features. This is a customized architecture that is flexible for handling various input and output resolution requirements. It can be applied at placement stage without using global routing information. This technique is evaluated on 12 industrial designs at 7nm technology node. The results show that it can improve true positive rate by 37%, 40% and 14% respectively, compared to three recent works, with similar false positive rates.","PeriodicalId":151741,"journal":{"name":"Proceedings of the 2020 International Symposium on Physical Design","volume":"9 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 International Symposium on Physical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372780.3375560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

As the semiconductor process technology advances into sub-10nm regime, cell pin accessibility, which is a complex joint effect from the pin shape and nearby blockages, becomes a main cause for DRC violations. Therefore, a machine learning model for DRC hotspot prediction needs to consider both very high-resolution pin shape patterns and low-resolution layout information as input features. A new convolutional neural network technique, J-Net, is introduced for the prediction with mixed resolution features. This is a customized architecture that is flexible for handling various input and output resolution requirements. It can be applied at placement stage without using global routing information. This technique is evaluated on 12 industrial designs at 7nm technology node. The results show that it can improve true positive rate by 37%, 40% and 14% respectively, compared to three recent works, with similar false positive rates.
基于自定义卷积网络的亚10nm制程节点DRC热点预测
随着半导体工艺技术向亚10nm方向发展,由于引脚形状和附近阻塞的复杂共同作用,电池引脚可及性成为DRC违规的主要原因。因此,用于DRC热点预测的机器学习模型需要同时考虑高分辨率引脚形状图案和低分辨率布局信息作为输入特征。提出了一种新的卷积神经网络技术——J-Net,用于混合分辨率特征的预测。这是一种定制的体系结构,可以灵活地处理各种输入和输出分辨率需求。它可以在不使用全局路由信息的情况下在放置阶段应用。该技术在12个7nm工艺节点的工业设计上进行了评估。结果表明,在假阳性率相近的情况下,该方法能将真阳性率分别提高37%、40%和14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信