Code compression for VLIW processors using variable-to-fixed coding

H. Lekatsas, W. Wolf, Yuan Xie
{"title":"Code compression for VLIW processors using variable-to-fixed coding","authors":"H. Lekatsas, W. Wolf, Yuan Xie","doi":"10.1145/581199.581231","DOIUrl":null,"url":null,"abstract":"Memory has been one of the most restricted resources in the embedded computing system domain. Code compression has been proposed as a solution to this problem. Previous work used fixed-to-variable coding algorithms that translate fixed-length bit sequences into variable-length bit sequences. In this paper, we propose code compression schemes that use variable-to-fixed (V2F) length coding. We also propose an instruction bus encoding scheme, which can effectively reduce the bus power consumption. Though the code compression algorithm can be applied to any embedded processor, it favors VLIW architectures because VLIW architectures require a high-bandwidth instruction pre-fetch mechanism to supply multiple operations per cycle. Experiments show that the compression ratios using memoryless V2F coding for IA-64 and TMS320C6x are around 72.7% and 82.5% respectively. Markov V2F coding can achieve better compression ratio up to 56% and 70% for IA-64 and TMS320C6x respectively. A greedy algorithm for codeword assignment can reduce the bus power consumption and the reduction depends on the probability model used.","PeriodicalId":413693,"journal":{"name":"15th International Symposium on System Synthesis, 2002.","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th International Symposium on System Synthesis, 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/581199.581231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

Abstract

Memory has been one of the most restricted resources in the embedded computing system domain. Code compression has been proposed as a solution to this problem. Previous work used fixed-to-variable coding algorithms that translate fixed-length bit sequences into variable-length bit sequences. In this paper, we propose code compression schemes that use variable-to-fixed (V2F) length coding. We also propose an instruction bus encoding scheme, which can effectively reduce the bus power consumption. Though the code compression algorithm can be applied to any embedded processor, it favors VLIW architectures because VLIW architectures require a high-bandwidth instruction pre-fetch mechanism to supply multiple operations per cycle. Experiments show that the compression ratios using memoryless V2F coding for IA-64 and TMS320C6x are around 72.7% and 82.5% respectively. Markov V2F coding can achieve better compression ratio up to 56% and 70% for IA-64 and TMS320C6x respectively. A greedy algorithm for codeword assignment can reduce the bus power consumption and the reduction depends on the probability model used.
使用可变到固定编码的VLIW处理器的代码压缩
在嵌入式计算系统领域,内存一直是最受限制的资源之一。代码压缩已经被提出作为解决这个问题的一种方法。以前的工作使用固定到可变的编码算法,将固定长度的比特序列转换为可变长度的比特序列。在本文中,我们提出了使用可变到固定(V2F)长度编码的代码压缩方案。我们还提出了一种指令总线编码方案,可以有效地降低总线功耗。尽管代码压缩算法可以应用于任何嵌入式处理器,但它更倾向于VLIW体系结构,因为VLIW体系结构需要高带宽指令预取机制来提供每个周期的多个操作。实验表明,在IA-64和TMS320C6x上使用无内存V2F编码的压缩比分别在72.7%和82.5%左右。对于IA-64和TMS320C6x,马尔可夫V2F编码可以实现更好的压缩比,分别达到56%和70%。一种贪婪的码字分配算法可以降低总线功耗,这种降低取决于所使用的概率模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信