Cascaded ASPP and Attention Mechanism-based Deeplabv3+ Semantic Segmentation Model

Shuaiping Guo, Changming Zhu
{"title":"Cascaded ASPP and Attention Mechanism-based Deeplabv3+ Semantic Segmentation Model","authors":"Shuaiping Guo, Changming Zhu","doi":"10.1109/ccis57298.2022.10016433","DOIUrl":null,"url":null,"abstract":"Deeplabv3+ is a standard semantic segmentation model, which adds decoding structure to recover spatial information of the image and uses the Atrous Spatial Pyramid Pooling (ASPP) module to solve the multi-scale problem of the image. However, the Deeplabv3+ model has some drawbacks regarding restoring details. Therefore, we propose the CB_Deeplabv3+ model. In the encoding structure of the CB_Deeplabv3+ model, we use ASPP modules cascaded in parallel to extend the network structure and enable the model to capture richer context information by increasing the information interaction between channels. At the same time, CB_Deeplabv3+ introduced the Convolutional Block Attention Module(CBAM) to solve the long-distance dependence problem in the encoding-decoding structure. Experimental evaluation results on the Part_VOC dataset show that CB_Deeplabv3+ achieves excellent performance for semantic segmentation.","PeriodicalId":374660,"journal":{"name":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ccis57298.2022.10016433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Deeplabv3+ is a standard semantic segmentation model, which adds decoding structure to recover spatial information of the image and uses the Atrous Spatial Pyramid Pooling (ASPP) module to solve the multi-scale problem of the image. However, the Deeplabv3+ model has some drawbacks regarding restoring details. Therefore, we propose the CB_Deeplabv3+ model. In the encoding structure of the CB_Deeplabv3+ model, we use ASPP modules cascaded in parallel to extend the network structure and enable the model to capture richer context information by increasing the information interaction between channels. At the same time, CB_Deeplabv3+ introduced the Convolutional Block Attention Module(CBAM) to solve the long-distance dependence problem in the encoding-decoding structure. Experimental evaluation results on the Part_VOC dataset show that CB_Deeplabv3+ achieves excellent performance for semantic segmentation.
基于级联ASPP和注意机制的Deeplabv3+语义分割模型
Deeplabv3+是一种标准的语义分割模型,它增加了解码结构来恢复图像的空间信息,并使用阿特劳斯空间金字塔池(ASPP)模块来解决图像的多尺度问题。然而,Deeplabv3+模型在恢复细节方面有一些缺点。因此,我们提出CB_Deeplabv3+模型。在CB_Deeplabv3+模型的编码结构中,我们使用并行级联的ASPP模块来扩展网络结构,并通过增加通道之间的信息交互使模型能够捕获更丰富的上下文信息。同时,CB_Deeplabv3+引入了卷积块注意模块(Convolutional Block Attention Module, CBAM),解决了编解码结构中的远距离依赖问题。在Part_VOC数据集上的实验评估结果表明,CB_Deeplabv3+在语义分割方面取得了优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信