Asymmetric NoC Architectures for GPU Systems

Amir Kavyan Ziabari, José L. Abellán, Yenai Ma, A. Joshi, D. Kaeli
{"title":"Asymmetric NoC Architectures for GPU Systems","authors":"Amir Kavyan Ziabari, José L. Abellán, Yenai Ma, A. Joshi, D. Kaeli","doi":"10.1145/2786572.2786596","DOIUrl":null,"url":null,"abstract":"While both Chip MultiProcessors (CMPs) and Graphics Processing Units (GPUs) are many-core systems, they exhibit different memory access patterns. CMPs execute threads in parallel, where threads communicate and synchronize through the memory hierarchy (without any coalescing). GPUs on the other hand execute a large number of independent thread blocks and their accesses to memory are frequent and coalesced, resulting in a completely different access pattern. NoC designs for GPUs have not been extensively explored. In this paper, we first evaluate several NoC designs for GPUs to determine the most power/performance efficient NoCs. To improve NoC energy efficiency, we explore an asymmetric NoC design tailored for a GPU's memory access pattern, providing one network for L1-to-L2 communication and a second for L2-to-L1 traffic. Our analysis shows that an asymmetric multi-network Cmesh provides the most energy-efficient communication fabric for our target GPU system.","PeriodicalId":228605,"journal":{"name":"Proceedings of the 9th International Symposium on Networks-on-Chip","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Symposium on Networks-on-Chip","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2786572.2786596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

While both Chip MultiProcessors (CMPs) and Graphics Processing Units (GPUs) are many-core systems, they exhibit different memory access patterns. CMPs execute threads in parallel, where threads communicate and synchronize through the memory hierarchy (without any coalescing). GPUs on the other hand execute a large number of independent thread blocks and their accesses to memory are frequent and coalesced, resulting in a completely different access pattern. NoC designs for GPUs have not been extensively explored. In this paper, we first evaluate several NoC designs for GPUs to determine the most power/performance efficient NoCs. To improve NoC energy efficiency, we explore an asymmetric NoC design tailored for a GPU's memory access pattern, providing one network for L1-to-L2 communication and a second for L2-to-L1 traffic. Our analysis shows that an asymmetric multi-network Cmesh provides the most energy-efficient communication fabric for our target GPU system.
GPU系统的非对称NoC架构
虽然芯片多处理器(cmp)和图形处理单元(gpu)都是多核系统,但它们表现出不同的内存访问模式。cmp并行执行线程,其中线程通过内存层次结构进行通信和同步(没有任何合并)。另一方面,gpu执行大量独立的线程块,它们对内存的访问是频繁和合并的,导致了完全不同的访问模式。gpu的NoC设计还没有得到广泛的探索。在本文中,我们首先评估了几种gpu的NoC设计,以确定最具功耗/性能效率的NoC。为了提高NoC能源效率,我们探索了针对GPU内存访问模式量身定制的非对称NoC设计,为l1到l2通信提供一个网络,为l2到l1流量提供另一个网络。我们的分析表明,非对称多网络Cmesh为我们的目标GPU系统提供了最节能的通信结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信