Supervised Learning in the Context of Educational Data Mining to Avoid University Students Dropout

Kelly J. de O. Santos, A. G. Menezes, A. B. Carvalho, C. A. E. Montesco
{"title":"Supervised Learning in the Context of Educational Data Mining to Avoid University Students Dropout","authors":"Kelly J. de O. Santos, A. G. Menezes, A. B. Carvalho, C. A. E. Montesco","doi":"10.1109/ICALT.2019.00068","DOIUrl":null,"url":null,"abstract":"Educational data mining is a research field that looks for extracting useful information from large educational datasets. This area provides tools for improving student retention rates around the world. In this paper we propose a computational approach using educational data mining and different supervised learning techniques (Decision Trees, K-nearest Neighbor, Neural Networks, Support Vector Machines, Naive Bayes and Random Forests) to evaluate the behaviour of different prediction models in order to identify the profile of at-risk university students in a Brazilian university environment. The results of this paper indicate that some algorithms can be used as tools for supporting decisions that reduce school dropout.","PeriodicalId":356549,"journal":{"name":"2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALT.2019.00068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Educational data mining is a research field that looks for extracting useful information from large educational datasets. This area provides tools for improving student retention rates around the world. In this paper we propose a computational approach using educational data mining and different supervised learning techniques (Decision Trees, K-nearest Neighbor, Neural Networks, Support Vector Machines, Naive Bayes and Random Forests) to evaluate the behaviour of different prediction models in order to identify the profile of at-risk university students in a Brazilian university environment. The results of this paper indicate that some algorithms can be used as tools for supporting decisions that reduce school dropout.
教育数据挖掘背景下的监督学习避免大学生辍学
教育数据挖掘是一个从大型教育数据集中提取有用信息的研究领域。该领域为提高世界各地的学生保留率提供了工具。在本文中,我们提出了一种计算方法,使用教育数据挖掘和不同的监督学习技术(决策树、k近邻、神经网络、支持向量机、朴素贝叶斯和随机森林)来评估不同预测模型的行为,以识别巴西大学环境中处于危险中的大学生的特征。本文的结果表明,一些算法可以作为支持决策的工具,以减少辍学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信