S. Bellucci, A. Sindona, D. Mencarelli, L. Pierantoni
{"title":"Electrical conductivity of graphene: a time-dependent density functional theory study","authors":"S. Bellucci, A. Sindona, D. Mencarelli, L. Pierantoni","doi":"10.1109/SMICND.2015.7355209","DOIUrl":null,"url":null,"abstract":"Excitation and propagation of surfaces waves in graphene are analyzed within a frequency band of 1 to 300 THz, and a time domain of 1 to 10 ps. An ab initio approach, based on time dependent density functional theory in linear response regime is used. The key outputs of the simulation are the ab-initio conductance in time and frequency. This is shown to tend to a continuous integral relations in graphene, when the valence and conduction bands is treated within the conical approximation, in agreement with a widely used construction derived from the Kubo formula. Non-negligible differences are observed between the ab-initio and continuous methods at frequencies larger than a few tens of THz, i.e., at times shorter that 0.1ps, where the conical approximation reaches its limits of validity. The main conclusion of the study is that a novel conductivity concept is introduced, which represents a fundamental improvement with respect to some commonly used methods in electromagnetic simulations, working at THz frequencies. These tools may open the way to properly analyze graphene related materials, hethero-structures and interfaces.).","PeriodicalId":325576,"journal":{"name":"2015 International Semiconductor Conference (CAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Semiconductor Conference (CAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMICND.2015.7355209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Excitation and propagation of surfaces waves in graphene are analyzed within a frequency band of 1 to 300 THz, and a time domain of 1 to 10 ps. An ab initio approach, based on time dependent density functional theory in linear response regime is used. The key outputs of the simulation are the ab-initio conductance in time and frequency. This is shown to tend to a continuous integral relations in graphene, when the valence and conduction bands is treated within the conical approximation, in agreement with a widely used construction derived from the Kubo formula. Non-negligible differences are observed between the ab-initio and continuous methods at frequencies larger than a few tens of THz, i.e., at times shorter that 0.1ps, where the conical approximation reaches its limits of validity. The main conclusion of the study is that a novel conductivity concept is introduced, which represents a fundamental improvement with respect to some commonly used methods in electromagnetic simulations, working at THz frequencies. These tools may open the way to properly analyze graphene related materials, hethero-structures and interfaces.).